Contraction kernels and combinatorial maps

被引:14
|
作者
Brun, L [1 ]
Kropatsch, W
机构
[1] IUT Reims, Lab Etud & Rech Informat, F-51059 Reims, France
[2] Vienna Univ Technol, Inst Comp Aided Automat Pattern Recognit & Image, Vienna, Austria
关键词
segmentation; combinatorial maps; hierarchical representation; combinatorial pyramids;
D O I
10.1016/S0167-8655(02)00251-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph pyramids are made of a stack of successively reduced graphs embedded in the plane. Such pyramids overcome the main limitations of their regular ancestors. The graphs used in the pyramid may be region adjacency graphs, dual graphs or combinatorial maps. Compared to usual graph data structures, combinatorial maps offer an explicit encoding of the orientation of edges around vertices. Each combinatorial map in the pyramid is generated from the one below by a set of edges to be contracted. This contraction process is controlled by kernels that can be combined in many ways. This paper shows that kernels producing a slow reduction rate can be combined to speed up reduction. Conversely, kernels decompose into smaller kernels that generate a more gradual reduction. We also propose one sequential and one parallel algorithm to compute the contracted combinatorial maps. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1051 / 1057
页数:7
相关论文
共 50 条
  • [1] COMBINATORIAL MAPS
    VINCE, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (01) : 1 - 21
  • [2] ON CONTRACTION MAPS
    SASTRY, KPR
    NAIDU, SVR
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (12): : 1417 - 1419
  • [3] On contraction properties of Markov kernels
    P. Del Moral
    M. Ledoux
    L. Miclo
    Probability Theory and Related Fields, 2003, 126 : 395 - 420
  • [4] On contraction properties of Markov kernels
    Del Moral, P
    Ledoux, M
    Miclo, L
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 126 (03) : 395 - 420
  • [5] Signatures of Combinatorial Maps
    Gosselin, Stephane
    Damiand, Guillaume
    Solnon, Christine
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2009, 5852 : 370 - 382
  • [6] REGULAR COMBINATORIAL MAPS
    VINCE, A
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (03) : 256 - 277
  • [7] CUBIC COMBINATORIAL MAPS
    LITTLE, CHC
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (01) : 44 - 63
  • [8] COMBINATORIAL ORIENTED MAPS
    TUTTE, WT
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1979, 31 (05): : 986 - 1004
  • [9] COMBINATORIAL HEAT KERNELS AND INDEX THEOREMS
    ELEK, G
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 129 (01) : 64 - 79
  • [10] STEIN KERNELS AND MOMENT MAPS
    Fathi, Max
    ANNALS OF PROBABILITY, 2019, 47 (04): : 2172 - 2185