Single-cell multi-omics have transformed biomedical research and present exciting machine learning opportunities. We present scLinear, a linear regression-based approach that predicts single-cell protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art methodologies, without compromising its accuracy. ScLinear is interpretable and accurately generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view in using complex algorithms ignoring simpler, faster, and more efficient approaches. scLinear is a simple linear regression model that outperforms complex machine/deep learning approaches in predicting protein abundance at single-cell resolution.
机构:
Peking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R ChinaPeking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R China
Wang, Ke
Zhao, Weijia
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R ChinaPeking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R China
Zhao, Weijia
Jin, Rong
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R ChinaPeking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R China
Jin, Rong
Ge, Qing
论文数: 0引用数: 0
h-index: 0
机构:
Peking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R China
Peking Univ, Sch Basic Med Sci, Dept Integrat Chinese & Western Med, Beijing, Peoples R ChinaPeking Univ, NHC Key Lab Med Immunol, Sch Basic Med Sci, Dept Immunol, Beijing, Peoples R China