ScLinear predicts protein abundance at single-cell resolution

被引:0
|
作者
Hanhart, Daniel [1 ]
Gossi, Federico [1 ]
Rapsomaniki, Maria Anna [2 ]
Kruithof-de Julio, Marianna [1 ,3 ]
Chouvardas, Panagiotis [1 ,3 ]
机构
[1] Univ Bern, Dept BioMed Res, Urol Res Lab, CH-3008 Bern, Switzerland
[2] IBM Res Europe, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[3] Univ Bern, Bern Univ Hosp, Dept Urol, Inselspital, CH-3010 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1038/s42003-024-05958-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell multi-omics have transformed biomedical research and present exciting machine learning opportunities. We present scLinear, a linear regression-based approach that predicts single-cell protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art methodologies, without compromising its accuracy. ScLinear is interpretable and accurately generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view in using complex algorithms ignoring simpler, faster, and more efficient approaches. scLinear is a simple linear regression model that outperforms complex machine/deep learning approaches in predicting protein abundance at single-cell resolution.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Human Synovium at Single-Cell Resolution
    Edalat, S. G.
    Micheroli, R.
    Kuret, T.
    Burki, K.
    Pauli, C.
    Sodin-Semrl, S.
    Distler, O.
    Ospelt, C.
    Rot, G.
    Bertoncelj, Frank M.
    SWISS MEDICAL WEEKLY, 2020, : 8S - 8S
  • [22] IMMUNE AGING AT SINGLE-CELL RESOLUTION
    Artyomov, Maxim
    INNOVATION IN AGING, 2023, 7 : 433 - 433
  • [23] Haplotype resolution at the single-cell level
    Adey, Andrew C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (47) : 12362 - 12364
  • [24] Immune ageing at single-cell resolution
    Mogilenko, Denis A.
    Shchukina, Irina
    Artyomov, Maxim N.
    NATURE REVIEWS IMMUNOLOGY, 2022, 22 (08) : 484 - 498
  • [25] Aging in microglia at single-cell resolution
    Alsema, A.
    Jiang, Q.
    Wachter, A.
    Kracht, L.
    Gerrits, E.
    Woodbury, M.
    Brouwer, N.
    Kooistra, S.
    Miedema, A.
    Dubbelaar, M.
    Heng, Y.
    Xi, S.
    Kummer, M.
    Biber, K.
    Moeller, T.
    Eggen, B.
    Boddeke, E.
    GLIA, 2019, 67 : E749 - E749
  • [26] Thermogenetic neurostimulation with single-cell resolution
    Ermakova, Yulia G.
    Lanin, Aleksandr A.
    Fedotov, Ilya V.
    Roshchin, Matvey
    Kelmanson, Ilya V.
    Kulik, Dmitry
    Bogdanova, Yulia A.
    Shokhina, Arina G.
    Bilan, Dmitry S.
    Staroverov, Dmitry B.
    Balaban, Pavel M.
    Fedotov, Andrei B.
    Sidorov-Biryukov, Dmitry A.
    Nikitin, Evgeny S.
    Zheltikov, Aleksei M.
    Belousov, Vsevolod V.
    NATURE COMMUNICATIONS, 2017, 8
  • [27] Thermogenetic neurostimulation with single-cell resolution
    Ermakova, Y.
    Lanin, A.
    Fedotov, I.
    Roshchin, M.
    Balaban, P.
    Zheltikov, A.
    Belousov, V.
    FEBS JOURNAL, 2017, 284 : 32 - 32
  • [28] Evolutionary neurogenomics at single-cell resolution
    Caglayan, Emre
    Konopka, Genevieve
    CURRENT OPINION IN GENETICS & DEVELOPMENT, 2024, 88
  • [29] Adipose tissue at single-cell resolution
    Maniyadath, Babukrishna
    Zhang, Qianbin
    Gupta, Rana K.
    Mandrup, Susanne
    CELL METABOLISM, 2023, 35 (03) : 386 - 413
  • [30] Deconstructing gastrulation at single-cell resolution
    Stern, Tomer
    Shvartsman, Stanislav Y.
    Wieschaus, Eric F.
    CURRENT BIOLOGY, 2022, 32 (08) : 1861 - +