ScLinear predicts protein abundance at single-cell resolution

被引:0
|
作者
Hanhart, Daniel [1 ]
Gossi, Federico [1 ]
Rapsomaniki, Maria Anna [2 ]
Kruithof-de Julio, Marianna [1 ,3 ]
Chouvardas, Panagiotis [1 ,3 ]
机构
[1] Univ Bern, Dept BioMed Res, Urol Res Lab, CH-3008 Bern, Switzerland
[2] IBM Res Europe, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[3] Univ Bern, Bern Univ Hosp, Dept Urol, Inselspital, CH-3010 Bern, Switzerland
基金
瑞士国家科学基金会;
关键词
D O I
10.1038/s42003-024-05958-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell multi-omics have transformed biomedical research and present exciting machine learning opportunities. We present scLinear, a linear regression-based approach that predicts single-cell protein abundance based on RNA expression. ScLinear is vastly more efficient than state-of-the-art methodologies, without compromising its accuracy. ScLinear is interpretable and accurately generalizes in unseen single-cell and spatial transcriptomics data. Importantly, we offer a critical view in using complex algorithms ignoring simpler, faster, and more efficient approaches. scLinear is a simple linear regression model that outperforms complex machine/deep learning approaches in predicting protein abundance at single-cell resolution.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] ScLinear predicts protein abundance at single-cell resolution
    Daniel Hanhart
    Federico Gossi
    Maria Anna Rapsomaniki
    Marianna Kruithof-de Julio
    Panagiotis Chouvardas
    Communications Biology, 7
  • [2] Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution
    Moran N Cabili
    Margaret C Dunagin
    Patrick D McClanahan
    Andrew Biaesch
    Olivia Padovan-Merhar
    Aviv Regev
    John L Rinn
    Arjun Raj
    Genome Biology, 16
  • [3] Localization and abundance analysis of human IncRNAs at single-cell and single-molecule resolution
    Cabili, Moran N.
    Dunagin, Margaret C.
    McClanahan, Patrick D.
    Biaesch, Andrew
    Padovan-Merhar, Olivia
    Regev, Aviv
    Rinn, John L.
    Raj, Arjun
    GENOME BIOLOGY, 2015, 16
  • [4] Genetics of single-cell protein abundance variation in large yeast populations
    Albert, Frank W.
    Treusch, Sebastian
    Shockley, Arthur H.
    Bloom, Joshua S.
    Kruglyak, Leonid
    NATURE, 2014, 506 (7489) : 494 - +
  • [5] Genetics of single-cell protein abundance variation in large yeast populations
    Frank W. Albert
    Sebastian Treusch
    Arthur H. Shockley
    Joshua S. Bloom
    Leonid Kruglyak
    Nature, 2014, 506 : 494 - 497
  • [6] Carcinogenesis at single-cell resolution
    Senft, Daniela
    NATURE REVIEWS CANCER, 2024, 24 (08) : 520 - 520
  • [7] Hematopoiesis at single-cell resolution
    Bryder, David
    BLOOD, 2016, 128 (08) : 1025 - 1026
  • [8] SINGLE-CELL PROTEIN
    VASEY, RB
    POWELL, KA
    BIOTECHNOLOGY & GENETIC ENGINEERING REVIEWS, 1984, 2 : 285 - 311
  • [9] SINGLE-CELL PROTEIN
    MATELES, RI
    TANNENBAUM, SR
    ECONOMIC BOTANY, 1968, 22 (01) : 42 - +
  • [10] Single-cell protein profiling of wastewater enterobacterial communities predicts disinfection efficiency
    Ponniah, G
    Chen, H
    Michielutti, R
    Salonen, N
    Blum, P
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (07) : 4227 - 4235