Pickl's proof of the quantum mean-field limit and quantum Klimontovich solutions

被引:0
|
作者
Ben Porat, Immanuel [1 ]
Golse, Francois [2 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX26GG, England
[2] Ecole Polytech, CMLS, CNRS, IP Paris, F-91128 Palaiseau, France
关键词
Schrodinger equation; Hartree equation; Mean-field limit; Klimontovich solution; VLASOV EQUATIONS; APPROXIMATION; DYNAMICS;
D O I
10.1007/s11005-023-01768-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper discusses the mean-field limit for the quantum dynamics of N identical bosons in R 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{R}}<^>3$$\end{document} interacting via a binary potential with Coulomb-type singularity. Our approach is based on the theory of quantum Klimontovich solutions defined in Golse and Paul (Commun Math Phys 369:1021-1053, 2019) . Our first main result is a definition of the interaction nonlinearity in the equation governing the dynamics of quantum Klimontovich solutions for a class of interaction potentials slightly less general than those considered in Kato (Trans Am Math Soc 70:195-211, 1951). Our second main result is a new operator inequality satisfied by the quantum Klimontovich solution in the case of an interaction potential with Coulomb-type singularity. When evaluated on an initial bosonic pure state, this operator inequality reduces to a Gronwall inequality for a functional introduced in Pickl (Lett Math Phys 97:151-164, 2011), resulting in a convergence rate estimate for the quantum mean-field limit leading to the time-dependent Hartree equation.
引用
收藏
页数:44
相关论文
共 50 条
  • [21] Nonlinear interference in a mean-field quantum model
    Reinisch, Gilbert
    Gudmundsson, Vidar
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 84 (04): : 699 - 705
  • [22] ON THE BINDING OF POLARONS IN A MEAN-FIELD QUANTUM CRYSTAL
    Lewin, Mathieu
    Rougerie, Nicolas
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (03) : 629 - 656
  • [23] MEAN-FIELD THEORY FOR VACANCIES IN A QUANTUM ANTIFERROMAGNET
    SHRAIMAN, BI
    SIGGIA, ED
    [J]. PHYSICAL REVIEW B, 1989, 40 (13): : 9162 - 9166
  • [24] Mean-field theory for quantum gauge glasses
    Pazmandi, F.
    Zimanyi, G. T.
    Scalettar, R. T.
    [J]. Europhysics Letters, 38 (04):
  • [25] Dynamical Mean-Field Theory for Quantum Chemistry
    Lin, Nan
    Marianetti, C. A.
    Millis, Andrew J.
    Reichman, David R.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (09)
  • [26] QUANTUM NUCLEAR HYDRODYNAMICS IN THE MEAN-FIELD APPROXIMATION
    KOLOMIETS, VM
    [J]. SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1983, 37 (03): : 325 - 331
  • [27] CRITICAL FLUCTUATIONS FOR QUANTUM MEAN-FIELD MODELS
    FANNES, M
    KOSSAKOWSKI, A
    VERBEURE, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 65 (3-4) : 801 - 811
  • [28] Mean-field quantum dynamics with magnetic fields
    Luehrmanna, Jonas
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [29] Mean-field theory of quantum Brownian motion
    Allahverdyan, AE
    Balian, R
    Nieuwenhuizen, TM
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2001, 23 (01): : 87 - 96
  • [30] Mean-field theory of quantum dot formation
    Dobbs, HT
    Vvedensky, DD
    Zangwill, A
    Johansson, J
    Carlsson, N
    Seifert, W
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (05) : 897 - 900