Pickl's proof of the quantum mean-field limit and quantum Klimontovich solutions

被引:0
|
作者
Ben Porat, Immanuel [1 ]
Golse, Francois [2 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford OX26GG, England
[2] Ecole Polytech, CMLS, CNRS, IP Paris, F-91128 Palaiseau, France
关键词
Schrodinger equation; Hartree equation; Mean-field limit; Klimontovich solution; VLASOV EQUATIONS; APPROXIMATION; DYNAMICS;
D O I
10.1007/s11005-023-01768-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper discusses the mean-field limit for the quantum dynamics of N identical bosons in R 3 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{R}}<^>3$$\end{document} interacting via a binary potential with Coulomb-type singularity. Our approach is based on the theory of quantum Klimontovich solutions defined in Golse and Paul (Commun Math Phys 369:1021-1053, 2019) . Our first main result is a definition of the interaction nonlinearity in the equation governing the dynamics of quantum Klimontovich solutions for a class of interaction potentials slightly less general than those considered in Kato (Trans Am Math Soc 70:195-211, 1951). Our second main result is a new operator inequality satisfied by the quantum Klimontovich solution in the case of an interaction potential with Coulomb-type singularity. When evaluated on an initial bosonic pure state, this operator inequality reduces to a Gronwall inequality for a functional introduced in Pickl (Lett Math Phys 97:151-164, 2011), resulting in a convergence rate estimate for the quantum mean-field limit leading to the time-dependent Hartree equation.
引用
收藏
页数:44
相关论文
共 50 条
  • [41] Quantum Mean-Field Games with the Observations of Counting Type
    Kolokoltsov, Vassili N.
    [J]. GAMES, 2021, 12 (01): : 1 - 14
  • [42] Quantum critical effects in mean-field glassy systems
    Ritort, F
    [J]. PHYSICAL REVIEW B, 1997, 55 (21): : 14096 - 14099
  • [43] Simplicity of mean-field theories in neural quantum states
    Trigueros, Fabian Ballar
    Mendes-Santos, Tiago
    Heyl, Markus
    [J]. PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [44] Quantum tetrahedral mean-field theory of the pyrochlore lattice
    García-Adeva, AJ
    Huber, DL
    [J]. CANADIAN JOURNAL OF PHYSICS, 2001, 79 (11-12) : 1359 - 1364
  • [45] EQUILIBRIUM STATES OF A CLASS OF QUANTUM MEAN-FIELD THEORIES
    BONA, P
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (12) : 2994 - 3007
  • [46] FLUCTUATIONS IN SOME MEAN-FIELD MODELS IN QUANTUM STATISTICS
    WRESZINSKI, WF
    [J]. HELVETICA PHYSICA ACTA, 1974, 46 (06): : 844 - 868
  • [47] Tricritical point in the quantum Hamiltonian mean-field model
    Schmid, Harald
    Dieplinger, Johannes
    Solfanelli, Andrea
    Succi, Sauro
    Ruffo, Stefano
    [J]. PHYSICAL REVIEW E, 2022, 106 (02)
  • [48] Mean-field theory of fractional quantum Hall effect
    Dzyaloshinskii, I
    [J]. PHYSICAL REVIEW B, 2002, 65 (20): : 1 - 7
  • [49] Quantum tetrahedral mean-field theory of the pyrochlore lattice
    Garcia-Adeva, A.J.
    Huber, D.L.
    [J]. Canadian Journal of Physics, 2002, 79 (11-12) : 1359 - 1364
  • [50] Dynamical mean-field theory of quantum stripe glasses
    Westfahl, H
    Schmalian, J
    Wolynes, PG
    [J]. PHYSICAL REVIEW B, 2003, 68 (13)