ON THE BINDING OF POLARONS IN A MEAN-FIELD QUANTUM CRYSTAL

被引:0
|
作者
Lewin, Mathieu [1 ,2 ]
Rougerie, Nicolas [3 ,4 ]
机构
[1] Univ Grenoble 1, F-38042 Grenoble, France
[2] CNRS, LPMMC, UMR 5493, F-38042 Grenoble, France
[3] CNRS, F-95000 Cergy Pontoise, France
[4] Univ Cergy Pontoise, Dept Math, UMR 8088, F-95000 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Polaron; quantum crystal; binding inequalities; HVZ theorem; Choquard-Pekar equation; CONCENTRATION-COMPACTNESS PRINCIPLE; CALCULUS; LIMIT;
D O I
10.1051/cocv/2012025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a multi-polaron model obtained by coupling the many-body Schrodinger equation for N interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background. We prove first that a single polaron always binds, i.e. the energy functional has a minimizer for N = 1. Then we discuss the case of multi-polarons containing N >= 2 electrons. We show that their existence is guaranteed when certain quantized binding inequalities of HVZ type are satisfied.
引用
收藏
页码:629 / 656
页数:28
相关论文
共 50 条
  • [1] Mean-field treatment of polarons in strong electrolytes
    Chuev, GN
    Sychyov, VV
    Sokolova, OY
    [J]. PHYSICAL REVIEW E, 2001, 63 (06): : 1 - 061204
  • [2] Dynamical mean-field theory of transport of small polarons
    Fratini, S
    Ciuchi, S
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (25)
  • [3] QUANTUM MEAN-FIELD GAMES
    Kolokoltsov, Vassili N.
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (03): : 2254 - 2288
  • [4] On quantum mean-field models and their quantum annealing
    Bapst, Victor
    Semerjian, Guilhem
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
  • [5] MEAN-FIELD QUANTUM-GRAVITY
    FLOREANINI, R
    PERCACCI, R
    [J]. PHYSICAL REVIEW D, 1992, 46 (04) : 1566 - 1579
  • [6] Quantum paraelectricity in the mean-field approximation
    Prosandeev, SA
    Kleemann, W
    Westwanski, B
    Dec, J
    [J]. PHYSICAL REVIEW B, 1999, 60 (21) : 14489 - 14491
  • [7] Quantum aging in mean-field models
    Cugliandolo, LF
    Lozano, G
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (22) : 4979 - 4982
  • [8] Optical properties of small polarons from dynamical mean-field theory
    Fratini, S.
    Ciuchi, S.
    [J]. PHYSICAL REVIEW B, 2006, 74 (07):
  • [9] Mean-field theory for global binding systematics
    Bertsch, GF
    Hagino, K
    [J]. PHYSICS OF ATOMIC NUCLEI, 2001, 64 (04) : 588 - 594
  • [10] Mean-field theory for global binding systematics
    G. F. Bertsch
    K. Hagino
    [J]. Physics of Atomic Nuclei, 2001, 64 : 588 - 594