ON THE BINDING OF POLARONS IN A MEAN-FIELD QUANTUM CRYSTAL

被引:0
|
作者
Lewin, Mathieu [1 ,2 ]
Rougerie, Nicolas [3 ,4 ]
机构
[1] Univ Grenoble 1, F-38042 Grenoble, France
[2] CNRS, LPMMC, UMR 5493, F-38042 Grenoble, France
[3] CNRS, F-95000 Cergy Pontoise, France
[4] Univ Cergy Pontoise, Dept Math, UMR 8088, F-95000 Cergy Pontoise, France
基金
欧洲研究理事会;
关键词
Polaron; quantum crystal; binding inequalities; HVZ theorem; Choquard-Pekar equation; CONCENTRATION-COMPACTNESS PRINCIPLE; CALCULUS; LIMIT;
D O I
10.1051/cocv/2012025
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider a multi-polaron model obtained by coupling the many-body Schrodinger equation for N interacting electrons with the energy functional of a mean-field crystal with a localized defect, obtaining a highly non linear many-body problem. The physical picture is that the electrons constitute a charge defect in an otherwise perfect periodic crystal. A remarkable feature of such a system is the possibility to form a bound state of electrons via their interaction with the polarizable background. We prove first that a single polaron always binds, i.e. the energy functional has a minimizer for N = 1. Then we discuss the case of multi-polarons containing N >= 2 electrons. We show that their existence is guaranteed when certain quantized binding inequalities of HVZ type are satisfied.
引用
收藏
页码:629 / 656
页数:28
相关论文
共 50 条
  • [21] Dynamical Mean-Field Theory for Quantum Chemistry
    Lin, Nan
    Marianetti, C. A.
    Millis, Andrew J.
    Reichman, David R.
    PHYSICAL REVIEW LETTERS, 2011, 106 (09)
  • [22] QUANTUM NUCLEAR HYDRODYNAMICS IN THE MEAN-FIELD APPROXIMATION
    KOLOMIETS, VM
    SOVIET JOURNAL OF NUCLEAR PHYSICS-USSR, 1983, 37 (03): : 325 - 331
  • [23] Mean-field quantum dynamics with magnetic fields
    Luehrmanna, Jonas
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (02)
  • [24] Mean-field theory of quantum Brownian motion
    Allahverdyan, AE
    Balian, R
    Nieuwenhuizen, TM
    EUROPEAN PHYSICAL JOURNAL B, 2001, 23 (01): : 87 - 96
  • [25] COMMENT ON A MEAN-FIELD THEORY OF QUANTUM ANTIFERROMAGNETS
    HIRSCH, JE
    TANG, S
    PHYSICAL REVIEW B, 1989, 39 (04): : 2850 - 2851
  • [26] Mean-field theory of quantum dot formation
    Dobbs, HT
    Vvedensky, DD
    Zangwill, A
    Johansson, J
    Carlsson, N
    Seifert, W
    PHYSICAL REVIEW LETTERS, 1997, 79 (05) : 897 - 900
  • [27] Mean-field theory for quantum gauge glasses
    Pazmandi, F
    Zimanyi, GT
    Scalettar, RT
    EUROPHYSICS LETTERS, 1997, 38 (04): : 255 - 260
  • [28] THE DYNAMICS OF A CLASS OF QUANTUM MEAN-FIELD THEORIES
    BONA, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (10) : 2223 - 2235
  • [29] Nonlinear interference in a mean-field quantum model
    Gilbert Reinisch
    Vidar Gudmundsson
    The European Physical Journal B, 2011, 84 : 699 - 705
  • [30] FROM QUANTUM ELECTRODYNAMICS TO MEAN-FIELD THEORY .2. VARIATIONAL STABILITY OF THE VACUUM OF QUANTUM ELECTRODYNAMICS IN THE MEAN-FIELD APPROXIMATION
    CHAIX, P
    IRACANE, D
    LIONS, PL
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 1989, 22 (23) : 3815 - 3828