REPAC: analysis of alternative polyadenylation from RNA-sequencing data

被引:4
|
作者
Imada, Eddie L. [1 ]
Wilks, Christopher [2 ]
Langmead, Ben [2 ]
Marchionni, Luigi [1 ]
机构
[1] Weill Cornell Med, Dept Pathol, Lab Med, New York, NY 10021 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD USA
基金
美国国家科学基金会;
关键词
Polyadenylation; Method; Compositions; ACTIVATION; CLEAVAGE; PTP1B;
D O I
10.1186/s13059-023-02865-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Alternative polyadenylation (APA) is an important post-transcriptional mechanism that has major implications in biological processes and diseases. Although specialized sequencing methods for polyadenylation exist, availability of these data are limited compared to RNA-sequencing data. We developed REPAC, a framework for the analysis of APA from RNA-sequencing data. Using REPAC, we investigate the landscape of APA caused by activation of B cells. We also show that REPAC is faster than alternative methods by at least 7-fold and that it scales well to hundreds of samples. Overall, the REPAC method offers an accurate, easy, and convenient solution for the exploration of APA.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Mitochondrial dysfunction in patients with cervical artery dissection: RNA-sequencing data analysis
    Shlapakova, P.
    Dobrynina, L.
    Kalashnikova, L.
    Gubanova, M.
    Danilova, M.
    Gnedovskaya, E.
    EUROPEAN JOURNAL OF NEUROLOGY, 2023, 30 : 668 - 668
  • [32] Protocol for analysis of RNA-sequencing and proteome profiling data for subgroup identification and comparison
    Yang, Kevin C.
    Gorski, Sharon M.
    STAR PROTOCOLS, 2022, 3 (02):
  • [33] DoubletDecon: Deconvoluting Doublets from Single-Cell RNA-Sequencing Data
    DePasquale, Erica A. K.
    Schnell, Daniel J.
    Van Camp, Pieter-Jan
    Valiente-Alandi, Inigo
    Blaxall, Burns C.
    Grimes, H. Leighton
    Singh, Harinder
    Salomonis, Nathan
    CELL REPORTS, 2019, 29 (06): : 1718 - +
  • [34] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [35] InPACT: a computational method for accurate characterization of intronic polyadenylation from RNA sequencing data
    Liu, Xiaochuan
    Chen, Hao
    Li, Zekun
    Yang, Xiaoxiao
    Jin, Wen
    Wang, Yuting
    Zheng, Jian
    Li, Long
    Xuan, Chenghao
    Yuan, Jiapei
    Yang, Yang
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [36] Identification of Alternative Splicing and Polyadenylation in RNA-seq Data
    Dixit, Gunjan
    Zheng, Ying
    Parker, Brian
    Wen, Jiayu
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (172):
  • [37] Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma
    Huang, Ruichao
    Wang, Xiaohu
    Yin, Xiangyun
    Zhou, Yaqi
    Sun, Jiansheng
    Yin, Zhongxiu
    Zhu, Zhi
    FRONTIERS IN GENETICS, 2022, 13
  • [38] DIPAN: Detecting personalized intronic polyadenylation derived neoantigens from RNA sequencing data
    Liu, Xiaochuan
    Jin, Wen
    Bao, Dengyi
    He, Tongxin
    Wang, Wenhui
    Li, Zekun
    Yang, Xiaoxiao
    Tong, Yang
    Shu, Meng
    Wang, Yuting
    Yuan, Jiapei
    Yang, Yang
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 2057 - 2066
  • [39] Mapping alternative polyadenylation in human cells using direct RNA sequencing technology
    Polenkowski, Mareike
    Allister, Aldrige Bernardus
    de Lara, Sebastian Burbano
    Soltau, Madleen
    Kendre, Gajanan
    Tran, Doan Duy Hai
    STAR PROTOCOLS, 2023, 4 (03):
  • [40] A survey on identification and quantification of alternative polyadenylation sites from RNA-seq data
    Chen, Moliang
    Ji, Guoli
    Fu, Hongjuan
    Lin, Qianmin
    Ye, Congting
    Ye, Wenbin
    Su, Yaru
    Wu, Xiaohui
    BRIEFINGS IN BIOINFORMATICS, 2020, 21 (04) : 1261 - 1276