DIPAN: Detecting personalized intronic polyadenylation derived neoantigens from RNA sequencing data

被引:1
|
作者
Liu, Xiaochuan [1 ]
Jin, Wen [1 ,2 ]
Bao, Dengyi [1 ]
He, Tongxin [1 ]
Wang, Wenhui [1 ,2 ]
Li, Zekun [1 ]
Yang, Xiaoxiao [1 ,2 ]
Tong, Yang [1 ]
Shu, Meng [1 ]
Wang, Yuting [1 ]
Yuan, Jiapei [3 ]
Yang, Yang [1 ,2 ]
机构
[1] Tianjin Med Univ, Gen Hosp,Hosp 2,Dept Bioinformat,Sch Basic Med Sc, Prov & Minist Cosponsored Collaborat Innovat Ctr, Tianjin Key Lab Inflammatory Biol,Tianjin Geriatr, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Dept Pharmacol, Tianjin, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Inst Hematol & Blood Dis Hosp, Haihe Lab Cell Ecosyst, State Key Lab Expt Hematol,Natl Clin Res Ctr Bloo, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Intronic polyadenylation; Cancer; Neoantigen; Mass spectrometry; T-CELL; CANCER; EXPRESSION; LANDSCAPE; VACCINES;
D O I
10.1016/j.csbj.2024.05.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intronic polyadenylation (IPA) refers to a particular type of alternative polyadenylation where a gene makes use of a polyadenylation site located within its introns. Aberrant IPA events have been observed in various types of cancer. IPA can produce noncoding transcripts or truncated protein-coding transcripts with altered coding sequences in the resulting protein product. Therefore, IPA events hold the potential to act as a reservoir of tumor neoantigens. Here, we developed a computational method termed DIPAN, which incorporates IPA detection, protein fragmentation, and MHC binding prediction to predict IPA-derived neoantigens. Utilizing RNA-seq from breast cancer cell lines and ovarian cancer clinical samples, we demonstrated the significant contribution of IPA events to the neoantigen repertoire. Through mass spectrometry immunopeptidome analysis, we further illustrated the processing and presentation of IPA-derived neoantigens on the surface of cancer cells. While most IPAderived neoantigens are sample-specific, shared neoantigens were identified in both cancer cell lines and clinical samples. Furthermore, we demonstrated an association between IPA-derived neoantigen burden and overall survival in cancer patients.
引用
收藏
页码:2057 / 2066
页数:10
相关论文
共 50 条
  • [1] InPACT: a computational method for accurate characterization of intronic polyadenylation from RNA sequencing data
    Liu, Xiaochuan
    Chen, Hao
    Li, Zekun
    Yang, Xiaoxiao
    Jin, Wen
    Wang, Yuting
    Zheng, Jian
    Li, Long
    Xuan, Chenghao
    Yuan, Jiapei
    Yang, Yang
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] NeoFuse: predicting fusion neoantigens from RNA sequencing data
    Fotakis, Georgios
    Rieder, Dietmar
    Haider, Marlene
    Trajanoski, Zlatko
    Finotello, Francesca
    BIOINFORMATICS, 2020, 36 (07) : 2260 - 2261
  • [3] NeoHunter:Flexible software for systematically detecting neoantigens from sequencing data
    Tianxing Ma
    Zetong Zhao
    Haochen Li
    Lei Wei
    Xuegong Zhang
    Quantitative Biology, 2024, 12 (01) : 70 - 84
  • [4] NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data
    Ma, Tianxing
    Zhao, Zetong
    Li, Haochen
    Wei, Lei
    Zhang, Xuegong
    QUANTITATIVE BIOLOGY, 2024, 12 (01) : 70 - 84
  • [5] REPAC: analysis of alternative polyadenylation from RNA-sequencing data
    Eddie L. Imada
    Christopher Wilks
    Ben Langmead
    Luigi Marchionni
    Genome Biology, 24
  • [6] REPAC: analysis of alternative polyadenylation from RNA-sequencing data
    Imada, Eddie L.
    Wilks, Christopher
    Langmead, Ben
    Marchionni, Luigi
    GENOME BIOLOGY, 2023, 24 (01)
  • [7] Prediction and prioritization of neoantigens: integration of RNA sequencing data with whole-exome sequencing
    Karasaki, Takahiro
    Nagayama, Kazuhiro
    Kuwano, Hideki
    Nitadori, Jun-ichi
    Sato, Masaaki
    Anraku, Masaki
    Hosoi, Akihiro
    Matsushita, Hirokazu
    Takazawa, Masaki
    Ohara, Osamu
    Nakajima, Jun
    Kakimi, Kazuhiro
    CANCER SCIENCE, 2017, 108 (02) : 170 - 177
  • [8] Tumor Neoantigens Derived from RNA Sequence Analysis
    Tang, Shaojun
    Rapisuwon, Suthee
    Wellstein, Anton
    Madhavan, Subha
    ACM-BCB' 2017: PROCEEDINGS OF THE 8TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY,AND HEALTH INFORMATICS, 2017, : 601 - 601
  • [9] pVACsplice: Predicting neoantigens from tumor-specific alternative splicing events derived from cis-acting regulatory mutations using whole exome and RNA sequencing datapVACsplice: Predicting neoantigens from tumor-specific alternative splicing events derived from cis-acting regulatory mutations using whole exome and RNA sequencing data
    Richters, Megan M.
    Cotto, Kelsy C.
    Kiwala, Susanna
    Xia, Huiming
    Carreno, Beatriz M.
    Dunn, Gavin P.
    Ribas, Antoni
    Griffith, Obi L.
    Griffith, Malachi
    CANCER RESEARCH, 2022, 82 (12)
  • [10] ScanNeo: identifying indel-derived neoantigens using RNA-Seq data
    Wang, Ting-You
    Wang, Li
    Alam, Sk Kayum
    Hoeppner, Luke H.
    Yang, Rendong
    BIOINFORMATICS, 2019, 35 (20) : 4159 - 4161