DIPAN: Detecting personalized intronic polyadenylation derived neoantigens from RNA sequencing data

被引:1
|
作者
Liu, Xiaochuan [1 ]
Jin, Wen [1 ,2 ]
Bao, Dengyi [1 ]
He, Tongxin [1 ]
Wang, Wenhui [1 ,2 ]
Li, Zekun [1 ]
Yang, Xiaoxiao [1 ,2 ]
Tong, Yang [1 ]
Shu, Meng [1 ]
Wang, Yuting [1 ]
Yuan, Jiapei [3 ]
Yang, Yang [1 ,2 ]
机构
[1] Tianjin Med Univ, Gen Hosp,Hosp 2,Dept Bioinformat,Sch Basic Med Sc, Prov & Minist Cosponsored Collaborat Innovat Ctr, Tianjin Key Lab Inflammatory Biol,Tianjin Geriatr, Tianjin, Peoples R China
[2] Tianjin Med Univ, Sch Basic Med Sci, Dept Pharmacol, Tianjin, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Inst Hematol & Blood Dis Hosp, Haihe Lab Cell Ecosyst, State Key Lab Expt Hematol,Natl Clin Res Ctr Bloo, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Intronic polyadenylation; Cancer; Neoantigen; Mass spectrometry; T-CELL; CANCER; EXPRESSION; LANDSCAPE; VACCINES;
D O I
10.1016/j.csbj.2024.05.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intronic polyadenylation (IPA) refers to a particular type of alternative polyadenylation where a gene makes use of a polyadenylation site located within its introns. Aberrant IPA events have been observed in various types of cancer. IPA can produce noncoding transcripts or truncated protein-coding transcripts with altered coding sequences in the resulting protein product. Therefore, IPA events hold the potential to act as a reservoir of tumor neoantigens. Here, we developed a computational method termed DIPAN, which incorporates IPA detection, protein fragmentation, and MHC binding prediction to predict IPA-derived neoantigens. Utilizing RNA-seq from breast cancer cell lines and ovarian cancer clinical samples, we demonstrated the significant contribution of IPA events to the neoantigen repertoire. Through mass spectrometry immunopeptidome analysis, we further illustrated the processing and presentation of IPA-derived neoantigens on the surface of cancer cells. While most IPAderived neoantigens are sample-specific, shared neoantigens were identified in both cancer cell lines and clinical samples. Furthermore, we demonstrated an association between IPA-derived neoantigen burden and overall survival in cancer patients.
引用
收藏
页码:2057 / 2066
页数:10
相关论文
共 50 条
  • [41] QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data
    Kevin C. H. Ha
    Benjamin J. Blencowe
    Quaid Morris
    Genome Biology, 19
  • [42] Detecting repeated cancer evolution from multiregion tumor sequencing data
    Caravagna, Giulio
    Giarratano, Ylenia
    Ramazzotti, Daniele
    Tomlinson, Ian
    Graham, Trevor A.
    Sanguinetti, Guido
    Sottoriva, Andrea
    NATURE METHODS, 2018, 15 (09) : 707 - +
  • [43] Intronic position+9 and-9 are potentially splicing sites boundary from intronic variants analysis of whole exome sequencing data
    Zhang, Li
    Shen, Minna
    Shu, Xianhong
    Zhou, Jingmin
    Ding, Jing
    Zhong, Chunjiu
    Pan, Baishen
    Wang, Beili
    Zhang, Chunyan
    Guo, Wei
    BMC MEDICAL GENOMICS, 2023, 16 (01)
  • [44] Detecting Alu insertions from high-throughput sequencing data
    David, Matei
    Mustafa, Harun
    Brudno, Michael
    NUCLEIC ACIDS RESEARCH, 2013, 41 (17)
  • [45] Extensible benchmarking of methods that identify and quantify polyadenylation sites from RNA-seq data
    Bryce-Smith, Sam
    Burri, Dominik
    Gazzara, Matthew R.
    Herrmann, Christina J.
    Danecka, Weronika
    Fitzsimmons, Christina M.
    Wan, Yuk Kei
    Zhuang, Farica
    Fansler, Mervin M.
    Fernandez, Jose M.
    Ferret, Meritxell
    Gonzalez-Uriarte, Asier
    Haynes, Samuel
    Herdman, Chelsea
    Kanitz, Alexander
    Katsantoni, Maria
    Marini, Federico
    McDonnel, Euan
    Nicolet, Ben
    Poon, Chi-Lam
    Rot, Gregor
    Scharfen, Leonard
    Wu, Pin-Jou
    Yoon, Yoseop
    Barash, Yoseph
    Zavolan, Mihaela
    RNA, 2023, 29 (12) : 1839 - 1855
  • [46] QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data
    Ha, Kevin C. H.
    Blencowe, Benjamin J.
    Morris, Quaid
    GENOME BIOLOGY, 2018, 19
  • [47] LongFuse: Detecting gene fusion transcripts from high throughput long-read single cell RNA sequencing data
    Shiau, Cheng-Kai
    He, Yueying
    Lin, Hsiao-Yun
    Lu, Lina
    Lu, Xiao-Dong
    Yu, Jindan
    Gao, Ruli
    CANCER RESEARCH, 2024, 84 (06)
  • [48] Observations on novel splice junctions from RNA sequencing data
    Wang, Likun
    Wang, Xiaowo
    Wang, Xi
    Liang, Yanchun
    Zhang, Xuegong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2011, 409 (02) : 299 - 303
  • [49] Indel detection from DNA and RNA sequencing data with transIndel
    Yang, Rendong
    Van Etten, Jamie L.
    Dehm, Scott M.
    BMC GENOMICS, 2018, 19
  • [50] Indel detection from DNA and RNA sequencing data with transIndel
    Rendong Yang
    Jamie L. Van Etten
    Scott M. Dehm
    BMC Genomics, 19