REPAC: analysis of alternative polyadenylation from RNA-sequencing data

被引:4
|
作者
Imada, Eddie L. [1 ]
Wilks, Christopher [2 ]
Langmead, Ben [2 ]
Marchionni, Luigi [1 ]
机构
[1] Weill Cornell Med, Dept Pathol, Lab Med, New York, NY 10021 USA
[2] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD USA
基金
美国国家科学基金会;
关键词
Polyadenylation; Method; Compositions; ACTIVATION; CLEAVAGE; PTP1B;
D O I
10.1186/s13059-023-02865-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Alternative polyadenylation (APA) is an important post-transcriptional mechanism that has major implications in biological processes and diseases. Although specialized sequencing methods for polyadenylation exist, availability of these data are limited compared to RNA-sequencing data. We developed REPAC, a framework for the analysis of APA from RNA-sequencing data. Using REPAC, we investigate the landscape of APA caused by activation of B cells. We also show that REPAC is faster than alternative methods by at least 7-fold and that it scales well to hundreds of samples. Overall, the REPAC method offers an accurate, easy, and convenient solution for the exploration of APA.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Statistical methods for analysis of single-cell RNA-sequencing data
    Das, Samarendra
    Rai, Shesh N.
    METHODSX, 2021, 8
  • [22] SNPlice: variants that modulate Intron retention from RNA-sequencing data
    Mudvari, Prakriti
    Movassagh, Mercedeh
    Kowsari, Kamran
    Seyfi, Ali
    Kokkinaki, Maria
    Edwards, Nathan J.
    Golestaneh, Nady
    Horvath, Anelia
    BIOINFORMATICS, 2015, 31 (08) : 1191 - 1198
  • [23] Normalization of RNA-Sequencing Data from Samples with Varying mRNA Levels
    Aanes, Havard
    Winata, Cecilia
    Moen, Lars F.
    Ostrup, Olga
    Mathavan, Sinnakaruppan
    Collas, Philippe
    Rognes, Torbjorn
    Alestrom, Peter
    PLOS ONE, 2014, 9 (02):
  • [24] Determining breast cancer histological grade from RNA-sequencing data
    Wang, Mei
    Klevebring, Daniel
    Lindberg, Johan
    Czene, Kamila
    Gronberg, Henrik
    Rantalainen, Mattias
    BREAST CANCER RESEARCH, 2016, 18
  • [25] Determining breast cancer histological grade from RNA-sequencing data
    Mei Wang
    Daniel Klevebring
    Johan Lindberg
    Kamila Czene
    Henrik Grönberg
    Mattias Rantalainen
    Breast Cancer Research, 18
  • [26] The alternative life of RNA-sequencing meets single molecule approaches
    Fernandez-Moya, Sandra M.
    Ehses, Janina
    Kiebler, Michael A.
    FEBS LETTERS, 2017, 591 (11) : 1455 - 1470
  • [27] PolyASite v3.0: a multi-species atlas of polyadenylation sites inferred from single-cell RNA-sequencing data
    Moon, Youngbin
    Herrmann, Christina J.
    Mironov, Aleksei
    Zavolan, Mihaela
    NUCLEIC ACIDS RESEARCH, 2024, 53 (D1) : D197 - D204
  • [28] RNA-sequencing in toxicogenomics
    Kleinjans, J.
    TOXICOLOGY LETTERS, 2015, 238 (02) : S35 - S36
  • [29] A comparison of survival analysis methods for cancer gene expression RNA-Sequencing data
    Raman, Pichai
    Zimmerman, Samuel
    Rathi, Komal S.
    de Torrente, Laurence
    Sarmady, Mahdi
    Wu, Chao
    Leipzig, Jeremy
    Taylor, Deanne M.
    Tozeren, Aydin
    Mar, Jessica C.
    CANCER GENETICS, 2019, 235 : 1 - 12
  • [30] MLSeq: Machine learning interface for RNA-sequencing data
    Goksuluk, Dincer
    Zararsiz, Gokmen
    Korkmaz, Selcuk
    Eldem, Vahap
    Zararsiz, Gozde Erturk
    Ozcetin, Erdener
    Ozturk, Ahmet
    Karaagaoglu, Ahmet Ergun
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 175 : 223 - 231