On MCMC sampling in random coefficients self-exciting integer-valued threshold autoregressive processes

被引:4
|
作者
Yang, Kai [1 ]
Li, Ang [1 ]
Yu, Xinyang [1 ]
Dong, Xiaogang [1 ,2 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun, Peoples R China
[2] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Integer-valued threshold autoregressive models; random coefficients process; Bayesian inference; MCMC sampling; latent variable; TIME-SERIES; LIKELIHOOD INFERENCE; MODEL;
D O I
10.1080/00949655.2023.2237159
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, Bayesian estimation is performed for a class of random coefficient self-exciting integer-valued threshold autoregressive processes with explanatory variables. A new model with a linear structure is obtained through model reconstruction, which makes Markov Chain Monte Carlo method easy to perform. By introducing the latent variables series, a complete data likelihood is obtained. Based on this likelihood, the full conditional distributions are easily obtained for all the parameters and latent variables. By maximizing the posterior probability function, the threshold parameter is accurately estimated. Finally, some numerical results of the estimates and a real data example of crime counts in Ballina, New South Wales, Australia are presented.
引用
收藏
页码:164 / 182
页数:19
相关论文
共 50 条
  • [31] Two-Threshold-Variable Integer-Valued Autoregressive Model
    Zhang, Jiayue
    Zhu, Fukang
    Chen, Huaping
    MATHEMATICS, 2023, 11 (16)
  • [32] Threshold integer-valued autoregressive model with serially dependent innovation
    Kang, Yao
    Sheng, Danshu
    Yue, Jinmei
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (17) : 3826 - 3863
  • [33] Conditional L-1 estimation for random coefficient integer-valued autoregressive processes
    Chen, Xi
    Wang, Lihong
    STATISTICS & RISK MODELING, 2013, 30 (03) : 221 - 235
  • [34] The Empirical Likelihood for First-Order Random Coefficient Integer-Valued Autoregressive Processes
    Zhang, Haixiang
    Wang, Dehui
    Zhu, Fukang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (03) : 492 - 509
  • [35] Statistical inference for first-order random coefficient integer-valued autoregressive processes
    Zhiwen Zhao
    Yadi Hu
    Journal of Inequalities and Applications, 2015
  • [36] Estimation of parameters in the self-exciting threshold autoregressive processes for nonlinear time series of counts
    Yang, Kai
    Li, Han
    Wang, Dehui
    APPLIED MATHEMATICAL MODELLING, 2018, 57 : 226 - 247
  • [37] Multivariate Self-Exciting Threshold Autoregressive Modeling by Genetic Algorithms
    Baragona, Roberto
    Cucina, Domenico
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2013, 233 (01): : 4 - 22
  • [38] Adaptive parameter estimation in self-exciting threshold autoregressive models
    Institute of Medical Statistics, Computer Sciences and Documentation, Friedrich Schiller University Jena, Jahnstraße 1, 07743 Jena, Germany
    不详
    Communications in Statistics Part B: Simulation and Computation, 27 (04): : 921 - 936
  • [39] Random rounded integer-valued autoregressive conditional heteroskedastic process
    Liu, Tianqing
    Yuan, Xiaohui
    STATISTICAL PAPERS, 2013, 54 (03) : 645 - 683
  • [40] Adaptive Test for Periodicity in Self-Exciting Threshold Autoregressive Models
    Bentarzi, M.
    Merzougui, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (08) : 1723 - 1741