On MCMC sampling in random coefficients self-exciting integer-valued threshold autoregressive processes

被引:4
|
作者
Yang, Kai [1 ]
Li, Ang [1 ]
Yu, Xinyang [1 ]
Dong, Xiaogang [1 ,2 ]
机构
[1] Changchun Univ Technol, Sch Math & Stat, Changchun, Peoples R China
[2] Changchun Univ Technol, Sch Math & Stat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Integer-valued threshold autoregressive models; random coefficients process; Bayesian inference; MCMC sampling; latent variable; TIME-SERIES; LIKELIHOOD INFERENCE; MODEL;
D O I
10.1080/00949655.2023.2237159
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this study, Bayesian estimation is performed for a class of random coefficient self-exciting integer-valued threshold autoregressive processes with explanatory variables. A new model with a linear structure is obtained through model reconstruction, which makes Markov Chain Monte Carlo method easy to perform. By introducing the latent variables series, a complete data likelihood is obtained. Based on this likelihood, the full conditional distributions are easily obtained for all the parameters and latent variables. By maximizing the posterior probability function, the threshold parameter is accurately estimated. Finally, some numerical results of the estimates and a real data example of crime counts in Ballina, New South Wales, Australia are presented.
引用
收藏
页码:164 / 182
页数:19
相关论文
共 50 条
  • [21] First-order random coefficient integer-valued autoregressive processes
    Zheng, Haitao
    Basawa, Ishwar V.
    Datta, Somnath
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (01) : 212 - 229
  • [22] Random environment integer-valued autoregressive process
    Nastic, Aleksandar S.
    Laketa, Petra N.
    Ristic, Miroslav M.
    JOURNAL OF TIME SERIES ANALYSIS, 2016, 37 (02) : 267 - 287
  • [23] Integer-valued autoregressive processes with periodic structure
    Monteiro, Magda
    Scotto, Manuel G.
    Pereira, Isabel
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (06) : 1529 - 1541
  • [24] Inference for pth-order random coefficient integer-valued autoregressive processes
    Zheng, HT
    Basawa, IV
    Datta, S
    JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (03) : 411 - 440
  • [25] Self-exciting hysteretic binomial autoregressive processes
    Yang, Kai
    Zhao, Xiuyue
    Dong, Xiaogang
    Weiss, Christian H.
    STATISTICAL PAPERS, 2024, 65 (03) : 1197 - 1231
  • [26] Bivariate first-order random coefficient integer-valued autoregressive processes
    Yu, Meiju
    Wang, Dehui
    Yang, Kai
    Liu, Yan
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 204 : 153 - 176
  • [27] Recursive fitting of self-exciting threshold autoregressive models
    Arnold, M
    Gunther, R
    Witte, H
    SIGNAL ANALYSIS & PREDICTION I, 1997, : 79 - 82
  • [29] Limit theorems for bifurcating integer-valued autoregressive processes
    Bercu B.
    Blandin V.
    Statistical Inference for Stochastic Processes, 2015, 18 (1) : 33 - 67
  • [30] Statistical inference for first-order random coefficient integer-valued autoregressive processes
    Zhao, Zhiwen
    Hu, Yadi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015, : 1 - 12