Deep Learning to Predict Mortality After Cardiothoracic Surgery Using Preoperative Chest Radiographs

被引:7
|
作者
Raghu, Vineet K. [1 ,2 ,3 ,4 ,5 ,6 ]
Moonsamy, Philicia [1 ,2 ,3 ,4 ,5 ,6 ]
Sundt, Thoralf M. [1 ,2 ,3 ,4 ,5 ,6 ]
Ong, Chin Siang [1 ,2 ,3 ,4 ,5 ,6 ]
Singh, Sanjana [1 ,2 ,3 ,4 ,5 ,6 ]
Cheng, Alexander [1 ,2 ,3 ,4 ,5 ,6 ]
Hou, Min [1 ,2 ,3 ,4 ,5 ,6 ]
Denning, Linda [1 ,2 ,3 ,4 ,5 ,6 ]
Gleason, Thomas G. [1 ,2 ,3 ,4 ,5 ,6 ]
Aguirre, Aaron D. [1 ,2 ,3 ,4 ,5 ,6 ]
Lu, Michael T. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Massachusetts Gen Hosp, Cardiovasc Imaging Res Ctr, Boston, MA USA
[2] Massachusetts Gen Hosp, Div Cardiac Surg, Boston, MA USA
[3] Johns Hopkins Univ Hosp, Div Cardiac Surg, Baltimore, MD USA
[4] Brigham & Womens Hosp, Div Cardiac Surg, Boston, MA USA
[5] Massachusetts Gen Hosp, Ctr Syst Biol, Boston, MA USA
[6] Massachusetts Gen Hosp, Cardiol Div, Boston, MA USA
来源
ANNALS OF THORACIC SURGERY | 2023年 / 115卷 / 01期
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.athoracsur.2022.04.056
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND The Society of Thoracic Surgeons Predicted Risk of Mortality (STS-PROM) estimates mortality risk only for certain common procedures (eg, coronary artery bypass or valve surgery) and is cumbersome, requiring greater than 60 inputs. We hypothesized that deep learning can estimate postoperative mortality risk based on a preoperative chest radiograph for cardiac surgeries in which STS-PROM scores were available (STS index procedures) or unavailable (non-STS index procedures). METHODS We developed a deep learning model (CXR-CTSurgery) to predict postoperative mortality based on pre -operative chest radiographs in 9283 patients at Massachusetts General Hospital (MGH) having cardiac surgery before April 8, 2014. CXR-CTSurgery was tested on 3615 different MGH patients and externally tested on 2840 patients from Brigham and Women's Hospital (BWH) having surgery after April 8, 2014. Discrimination for mortality was compared with the STS-PROM using the C-statistic. Calibration was assessed using the observed-to-expected ratio (O/E ratio). RESULTS For STS index procedures, CXR-CTSurgery had a C-statistic similar to STS-PROM at MGH (CXR-CTSurgery: 0.83 vs STS-PROM: 0.88; P = .20) and BWH (0.74 vs 0.80; P = .14) testing cohorts. The CXR-CTSurgery C-statistic for non-STS index procedures was similar to STS index procedures in the MGH (0.87 vs 0.83) and BWH (0.73 vs 0.74) testing cohorts. For STS index procedures, CXR-CTSurgery had better calibration than the STS-PROM in the MGH (O/E ratio: 0.74 vs 0.52) and BWH (O/E ratio: 0.91 vs 0.73) testing cohorts. CONCLUSIONS CXR-CTSurgery predicts postoperative mortality based on a preoperative CXR with similar discrimi-nation and better calibration than the STS-PROM. This may be useful when the STS-PROM cannot be calculated or for non-STS index procedures.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [31] Deep Learning for Detecting Pneumothorax on Chest Radiographs after Needle Biopsy: Clinical Implementation
    Hong, Wonju
    Hwang, Eui Jin
    Lee, Jong Hyuk
    Park, Jongsoo
    Goo, Jin Mo
    Park, Chang Min
    RADIOLOGY, 2022, 303 (02)
  • [32] Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation
    Tandon, Pranai
    Nguyen, Kim-Anh-Nhi
    Edalati, Masoud
    Parchure, Prathamesh
    Raut, Ganesh
    Reich, David L.
    Freeman, Robert
    Levin, Matthew A.
    Timsina, Prem
    Powell, Charles A.
    Fayad, Zahi A.
    Kia, Arash
    BIOENGINEERING-BASEL, 2024, 11 (06):
  • [33] Machine Learning Models with Preoperative Risk Factors and Intraoperative Hypotension Parameters Predict Mortality After Cardiac Surgery
    Fernandes, Marta Priscila Bento
    Armengol de la Hoz, Miguel
    Rangasamy, Valluvan
    Subramaniam, Balachundhar
    JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2021, 35 (03) : 857 - 865
  • [34] Preoperative statins for the prevention of atrial fibrillation after cardiothoracic surgery
    Lertsburapa, Kirkeith
    White, C. Michael
    Kluger, Jeffrey
    Faheem, Osman
    Hammond, Jonathon
    Coleman, Craig I.
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2008, 135 (02): : 405 - 411
  • [35] Radiology “forensics”: determination of age and sex from chest radiographs using deep learning
    Paul H. Yi
    Jinchi Wei
    Tae Kyung Kim
    Jiwon Shin
    Haris I. Sair
    Ferdinand K. Hui
    Gregory D. Hager
    Cheng Ting Lin
    Emergency Radiology, 2021, 28 : 949 - 954
  • [36] Prediction of Coronary Artery Calcium and Cardiovascular Risk on Chest Radiographs Using Deep Learning
    Kamel, Peter, I
    Yi, Paul H.
    Sair, Haris, I
    Lin, Cheng Ting
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2021, 3 (03):
  • [37] Deep Learning Model for Prediction of Bronchopulmonary Dysplasia in Preterm Infants Using Chest Radiographs
    Chou, Hao-Yang
    Lin, Yung-Chieh
    Hsieh, Sun-Yuan
    Chou, Hsin-Hung
    Lai, Cheng-Shih
    Wang, Bow
    Tsai, Yi-Shan
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (5): : 2063 - 2073
  • [38] Automatic detection of COVID-19 from chest radiographs using deep learning
    Pandit, M. K.
    Banday, S. A.
    Naaz, R.
    Chishti, M. A.
    RADIOGRAPHY, 2021, 27 (02) : 483 - 489
  • [39] Deep learning-based prognostication in idiopathic pulmonary fibrosis using chest radiographs
    Lee, Taehee
    Ahn, Su Yeon
    Kim, Jihang
    Park, Jong Sun
    Kwon, Byoung Soo
    Choi, Sun Mi
    Goo, Jin Mo
    Park, Chang Min
    Nam, Ju Gang
    EUROPEAN RADIOLOGY, 2024, 34 (07) : 4206 - 4217
  • [40] External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs
    Lee, Jong Hyuk
    Lee, Dongheon
    Lu, Michael T.
    Raghu, Vineet K.
    Goo, Jin Mo
    Choi, Yunhee
    Choi, Seung Ho
    Kim, Hyungjin
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (05)