Deep Learning to Predict Mortality After Cardiothoracic Surgery Using Preoperative Chest Radiographs

被引:7
|
作者
Raghu, Vineet K. [1 ,2 ,3 ,4 ,5 ,6 ]
Moonsamy, Philicia [1 ,2 ,3 ,4 ,5 ,6 ]
Sundt, Thoralf M. [1 ,2 ,3 ,4 ,5 ,6 ]
Ong, Chin Siang [1 ,2 ,3 ,4 ,5 ,6 ]
Singh, Sanjana [1 ,2 ,3 ,4 ,5 ,6 ]
Cheng, Alexander [1 ,2 ,3 ,4 ,5 ,6 ]
Hou, Min [1 ,2 ,3 ,4 ,5 ,6 ]
Denning, Linda [1 ,2 ,3 ,4 ,5 ,6 ]
Gleason, Thomas G. [1 ,2 ,3 ,4 ,5 ,6 ]
Aguirre, Aaron D. [1 ,2 ,3 ,4 ,5 ,6 ]
Lu, Michael T. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Massachusetts Gen Hosp, Cardiovasc Imaging Res Ctr, Boston, MA USA
[2] Massachusetts Gen Hosp, Div Cardiac Surg, Boston, MA USA
[3] Johns Hopkins Univ Hosp, Div Cardiac Surg, Baltimore, MD USA
[4] Brigham & Womens Hosp, Div Cardiac Surg, Boston, MA USA
[5] Massachusetts Gen Hosp, Ctr Syst Biol, Boston, MA USA
[6] Massachusetts Gen Hosp, Cardiol Div, Boston, MA USA
来源
ANNALS OF THORACIC SURGERY | 2023年 / 115卷 / 01期
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.athoracsur.2022.04.056
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND The Society of Thoracic Surgeons Predicted Risk of Mortality (STS-PROM) estimates mortality risk only for certain common procedures (eg, coronary artery bypass or valve surgery) and is cumbersome, requiring greater than 60 inputs. We hypothesized that deep learning can estimate postoperative mortality risk based on a preoperative chest radiograph for cardiac surgeries in which STS-PROM scores were available (STS index procedures) or unavailable (non-STS index procedures). METHODS We developed a deep learning model (CXR-CTSurgery) to predict postoperative mortality based on pre -operative chest radiographs in 9283 patients at Massachusetts General Hospital (MGH) having cardiac surgery before April 8, 2014. CXR-CTSurgery was tested on 3615 different MGH patients and externally tested on 2840 patients from Brigham and Women's Hospital (BWH) having surgery after April 8, 2014. Discrimination for mortality was compared with the STS-PROM using the C-statistic. Calibration was assessed using the observed-to-expected ratio (O/E ratio). RESULTS For STS index procedures, CXR-CTSurgery had a C-statistic similar to STS-PROM at MGH (CXR-CTSurgery: 0.83 vs STS-PROM: 0.88; P = .20) and BWH (0.74 vs 0.80; P = .14) testing cohorts. The CXR-CTSurgery C-statistic for non-STS index procedures was similar to STS index procedures in the MGH (0.87 vs 0.83) and BWH (0.73 vs 0.74) testing cohorts. For STS index procedures, CXR-CTSurgery had better calibration than the STS-PROM in the MGH (O/E ratio: 0.74 vs 0.52) and BWH (O/E ratio: 0.91 vs 0.73) testing cohorts. CONCLUSIONS CXR-CTSurgery predicts postoperative mortality based on a preoperative CXR with similar discrimi-nation and better calibration than the STS-PROM. This may be useful when the STS-PROM cannot be calculated or for non-STS index procedures.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [41] Radiology "forensics": determination of age and sex from chest radiographs using deep learning
    Yi, Paul H.
    Wei, Jinchi
    Kim, Tae Kyung
    Shin, Jiwon
    Sair, Haris I.
    Hui, Ferdinand K.
    Hager, Gregory D.
    Lin, Cheng Ting
    EMERGENCY RADIOLOGY, 2021, 28 (05) : 949 - 954
  • [42] Do preoperative radiographs help predict intraoperative challenges in revision surgery after previous shoulder hemiarthroplasty?
    O'Briain, David E.
    Simon, Peter
    Christmas, Kaitlyn N.
    Diaz, Miguel A.
    Hess, A. Vincent, II
    Hernandez-Ortiz, Eric G.
    Sellers, Thomas
    McLendon, Paul B.
    Mighell, Mark A.
    Frankle, Mark A.
    JOURNAL OF SHOULDER AND ELBOW SURGERY, 2019, 28 (06) : S161 - S167
  • [43] Comparing different deep learning architectures for classification of chest radiographs
    Bressem, Keno K.
    Adams, Lisa C.
    Erxleben, Christoph
    Hamm, Bernd
    Niehues, Stefan M.
    Vahldiek, Janis L.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [44] Deep Learning to Determine the Activity of Pulmonary Tuberculosis on Chest Radiographs
    Lee, Seowoo
    Yim, Jae-Joon
    Kwak, Nakwon
    Lee, Yeon Joo
    Lee, Jung-Kyu
    Lee, Ji Yeon
    Kim, Ju Sang
    Kang, Young Ae
    Jeon, Doosoo
    Jang, Myoung-jin
    Goo, Jin Mo
    Yoon, Soon Ho
    RADIOLOGY, 2021, 301 (02) : 435 - 442
  • [45] DEEP FEATURE DISENTANGLEMENT LEARNING FOR BONE SUPPRESSION IN CHEST RADIOGRAPHS
    Lin, Chunze
    Tang, Ruixiang
    Lin, Darryl D.
    Liu, Langechuan
    Lu, Jiwen
    Chen, Yunqiang
    Gao, Dashan
    Zhou, Jie
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 795 - 798
  • [46] Deep Learning to Estimate Biological Age From Chest Radiographs
    Raghu, Vineet K.
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo J. W. L.
    Lu, Michael T.
    JACC-CARDIOVASCULAR IMAGING, 2021, 14 (11) : 2226 - 2236
  • [47] Comparing different deep learning architectures for classification of chest radiographs
    Keno K. Bressem
    Lisa C. Adams
    Christoph Erxleben
    Bernd Hamm
    Stefan M. Niehues
    Janis L. Vahldiek
    Scientific Reports, 10
  • [48] Predicting Patient Demographics From Chest Radiographs With Deep Learning
    Adleberg, Jason
    Wardeh, Amr
    Doo, Florence X.
    Marinelli, Brett
    Cook, Tessa S.
    Mendelson, David S.
    Kagen, Alexander
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2022, 19 (10) : 1151 - 1161
  • [49] Deep Learning Prediction of Cardiac Chamber Enlargement on Chest Radiographs
    Davila, David M.
    Barnawi, Rashid
    Masoudi, Samira
    Mahmoodi, Amin
    Hsiao, Albert
    Hahn, Lewis
    CIRCULATION, 2023, 148
  • [50] A Fully Deep Learning Paradigm for Pneumoconiosis Staging on Chest Radiographs
    Sun, Wenjian
    Wu, Dongsheng
    Luo, Yang
    Liu, Lu
    Zhang, Hongjing
    Wu, Shuang
    Zhang, Yan
    Wang, Chenglong
    Zheng, Houjun
    Shen, Jiang
    Luo, Chunbo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 5154 - 5164