Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation

被引:0
|
作者
Tandon, Pranai [1 ]
Nguyen, Kim-Anh-Nhi [2 ]
Edalati, Masoud [2 ]
Parchure, Prathamesh [2 ]
Raut, Ganesh [2 ]
Reich, David L. [3 ]
Freeman, Robert [2 ]
Levin, Matthew A. [3 ,4 ,5 ]
Timsina, Prem [2 ]
Powell, Charles A. [1 ]
Fayad, Zahi A. [6 ,7 ]
Kia, Arash [2 ,3 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Med, Div Pulm Crit Care & Sleep Med, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Inst Healthcare Delivery Sci, Div Populat Hlth, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Dept Anesthesiol Perioperat & Pain Med, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Windreich Dept Artificial Intelligence & Human Hlt, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, BioMed Engn & Imaging Inst, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY 10029 USA
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 06期
关键词
machine learning; artificial intelligence; deep learning; transfer learning; respiratory failure; mechanical ventilation; ventilator liberation; clinical decision support;
D O I
10.3390/bioengineering11060626
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The decision to extubate patients on invasive mechanical ventilation is critical; however, clinician performance in identifying patients to liberate from the ventilator is poor. Machine Learning-based predictors using tabular data have been developed; however, these fail to capture the wide spectrum of data available. Here, we develop and validate a deep learning-based model using routinely collected chest X-rays to predict the outcome of attempted extubation. We included 2288 serial patients admitted to the Medical ICU at an urban academic medical center, who underwent invasive mechanical ventilation, with at least one intubated CXR, and a documented extubation attempt. The last CXR before extubation for each patient was taken and split 79/21 for training/testing sets, then transfer learning with k-fold cross-validation was used on a pre-trained ResNet50 deep learning architecture. The top three models were ensembled to form a final classifier. The Grad-CAM technique was used to visualize image regions driving predictions. The model achieved an AUC of 0.66, AUPRC of 0.94, sensitivity of 0.62, and specificity of 0.60. The model performance was improved compared to the Rapid Shallow Breathing Index (AUC 0.61) and the only identified previous study in this domain (AUC 0.55), but significant room for improvement and experimentation remains.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Weaning indexes do not predict success with non invasive mechanical ventilation in extubation failure
    O Torres
    L Delgado
    E Monares
    A Sanchez-Calzada
    R Gastelum
    JL Navarro
    P Romano
    J Franco
    Intensive Care Medicine Experimental, 3 (Suppl 1)
  • [2] Opportunistic Osteoporosis Screening Using Chest Radiographs With Deep Learning: Development and External Validation With a Cohort Dataset
    Jang, Miso
    Kim, Mingyu
    Bae, Sung Jin
    Lee, Seung Hun
    Koh, Jung-Min
    Kim, Namkug
    JOURNAL OF BONE AND MINERAL RESEARCH, 2022, 37 (02) : 369 - 377
  • [3] Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs
    Nam, Ju Gang
    Kim, Minchul
    Park, Jongchan
    Hwang, Eui Jin
    Lee, Jong Hyuk
    Hong, Jung Hee
    Goo, Jin Mo
    Park, Chang Min
    EUROPEAN RESPIRATORY JOURNAL, 2021, 57 (05)
  • [4] Deep Learning to Predict Mortality After Cardiothoracic Surgery Using Preoperative Chest Radiographs
    Raghu, Vineet K.
    Moonsamy, Philicia
    Sundt, Thoralf M.
    Ong, Chin Siang
    Singh, Sanjana
    Cheng, Alexander
    Hou, Min
    Denning, Linda
    Gleason, Thomas G.
    Aguirre, Aaron D.
    Lu, Michael T.
    ANNALS OF THORACIC SURGERY, 2023, 115 (01): : 257 - 264
  • [5] Development and Validation of a Deep-Learning Model to Predict Total Hip Replacement on Radiographs
    Xu, Yi
    Xiong, Hao
    Liu, Weixuan
    Liu, Hang
    Guo, Jingyi
    Wang, Wei
    Ruan, Hongjiang
    Sun, Ziyang
    Fan, Cunyi
    JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2024, 106 (05): : 389 - 396
  • [6] Deep learning prediction of survival in patients with heart failure using chest radiographs
    Jia, Han
    Liao, Shengen
    Zhu, Xiaomei
    Liu, Wangyan
    Xu, Yi
    Ge, Rongjun
    Zhu, Yinsu
    INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING, 2024, : 1891 - 1901
  • [7] Predicting Mechanical Ventilation and Mortality in COVID-19 Using Radiomics and Deep Learning on Chest Radiographs: A Multi-Institutional Study
    Bae, Joseph
    Kapse, Saarthak
    Singh, Gagandeep
    Gattu, Rishabh
    Ali, Syed
    Shah, Neal
    Marshall, Colin
    Pierce, Jonathan
    Phatak, Tej
    Gupta, Amit
    Green, Jeremy
    Madan, Nikhil
    Prasanna, Prateek
    DIAGNOSTICS, 2021, 11 (10)
  • [8] Deep learning model to predict the need for mechanical ventilation using chest X-ray images in hospitalised patients with COVID-19
    Kulkarni, Anoop R.
    Athavale, Ambarish M.
    Sahni, Ashima
    Sukhal, Shashvat
    Saini, Abhimanyu
    Itteera, Mathew
    Zhukovsky, Sara
    Vernik, Jane
    Abraham, Mohan
    Joshi, Amit
    Amarah, Amatur
    Ruiz, Juan
    Hart, Peter D.
    Kulkarni, Hemant
    BMJ INNOVATIONS, 2021, 7 (02) : 261 - 270
  • [9] Validation of a Deep Learning-Based Model to Predict Lung Cancer Risk Using Chest Radiographs and Electronic Medical Record Data
    Raghu, Vineet K.
    Walia, Anika S.
    Zinzuwadia, Aniket N.
    Goiffon, Reece J.
    Shepard, Jo-Anne O.
    Aerts, Hugo J. W. L.
    Lennes, Inga T.
    Lu, Michael T.
    JAMA NETWORK OPEN, 2022, 5 (12) : E2248793
  • [10] Development and Prospective Validation of a Deep Learning Algorithm for Predicting Need for Mechanical Ventilation
    Shashikumar, Supreeth P.
    Wardi, Gabriel
    Paul, Paulina
    Carlile, Morgan
    Brenner, Laura N.
    Hibbert, Kathryn A.
    North, Crystal M.
    Mukerji, Shibani
    Robbins, Gregory
    Shao, Yu-Ping
    Westover, Brandon
    Nemati, Shamim
    Malhotra, Atul
    CHEST, 2021, 159 (06) : 2264 - 2273