Deep Learning to Predict Mortality After Cardiothoracic Surgery Using Preoperative Chest Radiographs

被引:7
|
作者
Raghu, Vineet K. [1 ,2 ,3 ,4 ,5 ,6 ]
Moonsamy, Philicia [1 ,2 ,3 ,4 ,5 ,6 ]
Sundt, Thoralf M. [1 ,2 ,3 ,4 ,5 ,6 ]
Ong, Chin Siang [1 ,2 ,3 ,4 ,5 ,6 ]
Singh, Sanjana [1 ,2 ,3 ,4 ,5 ,6 ]
Cheng, Alexander [1 ,2 ,3 ,4 ,5 ,6 ]
Hou, Min [1 ,2 ,3 ,4 ,5 ,6 ]
Denning, Linda [1 ,2 ,3 ,4 ,5 ,6 ]
Gleason, Thomas G. [1 ,2 ,3 ,4 ,5 ,6 ]
Aguirre, Aaron D. [1 ,2 ,3 ,4 ,5 ,6 ]
Lu, Michael T. [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] Massachusetts Gen Hosp, Cardiovasc Imaging Res Ctr, Boston, MA USA
[2] Massachusetts Gen Hosp, Div Cardiac Surg, Boston, MA USA
[3] Johns Hopkins Univ Hosp, Div Cardiac Surg, Baltimore, MD USA
[4] Brigham & Womens Hosp, Div Cardiac Surg, Boston, MA USA
[5] Massachusetts Gen Hosp, Ctr Syst Biol, Boston, MA USA
[6] Massachusetts Gen Hosp, Cardiol Div, Boston, MA USA
来源
ANNALS OF THORACIC SURGERY | 2023年 / 115卷 / 01期
基金
美国国家卫生研究院;
关键词
D O I
10.1016/j.athoracsur.2022.04.056
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND The Society of Thoracic Surgeons Predicted Risk of Mortality (STS-PROM) estimates mortality risk only for certain common procedures (eg, coronary artery bypass or valve surgery) and is cumbersome, requiring greater than 60 inputs. We hypothesized that deep learning can estimate postoperative mortality risk based on a preoperative chest radiograph for cardiac surgeries in which STS-PROM scores were available (STS index procedures) or unavailable (non-STS index procedures). METHODS We developed a deep learning model (CXR-CTSurgery) to predict postoperative mortality based on pre -operative chest radiographs in 9283 patients at Massachusetts General Hospital (MGH) having cardiac surgery before April 8, 2014. CXR-CTSurgery was tested on 3615 different MGH patients and externally tested on 2840 patients from Brigham and Women's Hospital (BWH) having surgery after April 8, 2014. Discrimination for mortality was compared with the STS-PROM using the C-statistic. Calibration was assessed using the observed-to-expected ratio (O/E ratio). RESULTS For STS index procedures, CXR-CTSurgery had a C-statistic similar to STS-PROM at MGH (CXR-CTSurgery: 0.83 vs STS-PROM: 0.88; P = .20) and BWH (0.74 vs 0.80; P = .14) testing cohorts. The CXR-CTSurgery C-statistic for non-STS index procedures was similar to STS index procedures in the MGH (0.87 vs 0.83) and BWH (0.73 vs 0.74) testing cohorts. For STS index procedures, CXR-CTSurgery had better calibration than the STS-PROM in the MGH (O/E ratio: 0.74 vs 0.52) and BWH (O/E ratio: 0.91 vs 0.73) testing cohorts. CONCLUSIONS CXR-CTSurgery predicts postoperative mortality based on a preoperative CXR with similar discrimi-nation and better calibration than the STS-PROM. This may be useful when the STS-PROM cannot be calculated or for non-STS index procedures.
引用
收藏
页码:257 / 264
页数:8
相关论文
共 50 条
  • [1] DEEP LEARNING TO PREDICT POST-TAVR MORTALITY FROM CHEST RADIOGRAPHS
    Zinzuwadia, Aniket N.
    Raghu, Vineet
    Foldyna, Borek
    Lu, Michael T.
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 749 - 749
  • [2] Deep learning to estimate lung disease mortality from chest radiographs
    Jakob Weiss
    Vineet K. Raghu
    Dennis Bontempi
    David C. Christiani
    Raymond H. Mak
    Michael T. Lu
    Hugo J.W.L. Aerts
    Nature Communications, 14
  • [3] Deep learning to estimate lung disease mortality from chest radiographs
    Weiss, Jakob
    Raghu, Vineet K. K.
    Bontempi, Dennis
    Christiani, David C. C.
    Mak, Raymond H. H.
    Lu, Michael T. T.
    Aerts, Hugo J. W. L.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [4] Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
    Jakob Weiss
    Jana Taron
    Zexi Jin
    Thomas Mayrhofer
    Hugo J. W. L. Aerts
    Michael T. Lu
    Udo Hoffmann
    Scientific Reports, 11
  • [5] Radiologists can visually predict mortality risk based on the gestalt of chest radiographs comparable to a deep learning network
    Weiss, Jakob
    Taron, Jana
    Jin, Zexi
    Mayrhofer, Thomas
    Aerts, Hugo J. W. L.
    Lu, Michael T.
    Hoffmann, Udo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] Deep Learning-Based Computer-Aided Detection System for Preoperative Chest Radiographs to Predict Postoperative Pneumonia
    Lee, Taehee
    Hwang, Eui Jin
    Park, Chang Min
    Goo, Jin Mo
    ACADEMIC RADIOLOGY, 2023, 30 (12) : 2844 - 2855
  • [7] Novel Machine Learning Model to Predict Intensive Care Unit Readmission or Mortality After Cardiothoracic Surgery
    Cortina, George A.
    Zhong, Shujin
    Gao, Michael
    Ratliff, William
    Knechtle, William S.
    Balu, Suresh
    Kester, Kelly
    Lindsay, Mary
    Engel, Jill R.
    Schroder, Jacob N.
    Sendak, Mark
    Podgoreanu, Mihai V.
    ANESTHESIA AND ANALGESIA, 2020, 130 : 193 - 194
  • [8] The Performance of a Deep Learning-Based Automatic Measurement Model for Measuring the Cardiothoracic Ratio on Chest Radiographs
    Kim, Donguk
    Lee, Jong Hyuk
    Jang, Myoung-jin
    Park, Jongsoo
    Hong, Wonju
    Lee, Chan Su
    Yang, Si Yeong
    Park, Chang Min
    BIOENGINEERING-BASEL, 2023, 10 (09):
  • [9] DETECTION OF FOREIGN OBJECTS IN CHEST RADIOGRAPHS USING DEEP LEARNING
    Deshpande, Hrishikesh
    Harder, Tim
    Saalbach, Axel
    Sawarkar, Abhivyakti
    Buelow, Thomas
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING WORKSHOPS (IEEE ISBI WORKSHOPS 2020), 2020,
  • [10] Using deep learning for detecting gender in adult chest radiographs
    Xue, Zhiyun
    Antani, Sameer
    Long, L. Rodney
    Thoma, George R.
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579