Deep learning to estimate lung disease mortality from chest radiographs

被引:8
|
作者
Weiss, Jakob [1 ,2 ,3 ,4 ]
Raghu, Vineet K. K. [1 ,4 ]
Bontempi, Dennis [1 ,5 ]
Christiani, David C. C. [6 ,7 ]
Mak, Raymond H. H. [1 ,2 ]
Lu, Michael T. T. [1 ,4 ]
Aerts, Hugo J. W. L. [1 ,2 ,4 ,7 ]
机构
[1] Harvard Med Sch, Harvard Inst Med, Artificial Intelligence Med AIM Program, Mass Gen Brigham, 77 Ave Louis Pasteur, Boston, MA 02115 USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol, 75 Francis St & 450 Brookline Ave, Boston, MA 02115 USA
[3] Univ Freiburg, Univ Med Ctr Freiburg, Fac Med Dept Diagnost & Intervent Radiol, Hugstetter Str 55, D-79106 Freiburg, Germany
[4] Harvard Med Sch, Massachusetts Gen Hosp, Cardiovasc Imaging Res Ctr, 165 Cambridge St, Boston, MA 02114 USA
[5] Maastricht Univ, Radiol & Nucl Med, CARIM & GROW, Univ Singel 40, NL-6229 ER Maastricht, Netherlands
[6] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 655 Huntington Ave, Boston, MA 02115 USA
[7] Harvard Med Sch, Massachusetts Gen Hosp, Pulm & Crit Care Div, 55 Fruit St, Boston, MA 02114 USA
基金
欧洲研究理事会;
关键词
CANCER MORTALITY; COPD; AGE; COMORBIDITY; SELECTION; PROSTATE; BURDEN;
D O I
10.1038/s41467-023-37758-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Risk assessment of lung disease mortality is currently limited. Here, authors show that deep learning can estimate lung disease mortality from a chest x-ray beyond risk factors, which may help to identify individuals at risk in screening and cancer populations. Prevention and management of chronic lung diseases (asthma, lung cancer, etc.) are of great importance. While tests are available for reliable diagnosis, accurate identification of those who will develop severe morbidity/mortality is currently limited. Here, we developed a deep learning model, CXR Lung-Risk, to predict the risk of lung disease mortality from a chest x-ray. The model was trained using 147,497 x-ray images of 40,643 individuals and tested in three independent cohorts comprising 15,976 individuals. We found that CXR Lung-Risk showed a graded association with lung disease mortality after adjustment for risk factors, including age, smoking, and radiologic findings (Hazard ratios up to 11.86 [8.64-16.27]; p < 0.001). Adding CXR Lung-Risk to a multivariable model improved estimates of lung disease mortality in all cohorts. Our results demonstrate that deep learning can identify individuals at risk of lung disease mortality on easily obtainable x-rays, which may improve personalized prevention and treatment strategies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Deep learning to estimate lung disease mortality from chest radiographs
    Jakob Weiss
    Vineet K. Raghu
    Dennis Bontempi
    David C. Christiani
    Raymond H. Mak
    Michael T. Lu
    Hugo J.W.L. Aerts
    [J]. Nature Communications, 14
  • [2] Deep Learning to Estimate COVID-19 Mortality Risk from Chest Radiographs
    Raghu, Vineet
    Cheng, Alexander
    Singh, Sanjana
    Li, Matthew D.
    Zinzuwadia, Aniket
    Kalpathy-Cramer, Jayashree
    Lu, Michael T.
    [J]. CIRCULATION, 2021, 144
  • [3] Deep Learning to Estimate Biological Age From Chest Radiographs
    Raghu, Vineet K.
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo J. W. L.
    Lu, Michael T.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2021, 14 (11) : 2226 - 2236
  • [4] Deep Learning to Estimate Cardiovascular Risk From Chest Radiographs -A Risk Prediction Study
    Weiss, Jakob
    Raghu, Vineet K.
    Paruchuri, Kaavya
    Zinzuwadia, Aniket
    Natarajan, Pradeep
    Aerts, Hugo J. W. L.
    Lu, Michael T.
    [J]. ANNALS OF INTERNAL MEDICINE, 2024, 177 (04) : 409 - 417
  • [5] Deep Learning to Assess Long-term Mortality From Chest Radiographs
    Lu, Michael T.
    Ivanov, Alexander
    Mayrhofer, Thomas
    Hosny, Ahmed
    Aerts, Hugo J. W. L.
    Hoffmann, Udo
    [J]. JAMA NETWORK OPEN, 2019, 2 (07) : e197416
  • [6] DEEP LEARNING TO PREDICT POST-TAVR MORTALITY FROM CHEST RADIOGRAPHS
    Zinzuwadia, Aniket N.
    Raghu, Vineet
    Foldyna, Borek
    Lu, Michael T.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2022, 79 (09) : 749 - 749
  • [7] Deep-learning algorithm to detect fibrosing interstitial lung disease on chest radiographs
    Nishikiori, Hirotaka
    Kuronuma, Koji
    Hirota, Kenichi
    Yama, Naoya
    Suzuki, Tomohiro
    Onodera, Maki
    Onodera, Koichi
    Ikeda, Kimiyuki
    Mori, Yuki
    Asai, Yuichiro
    Takagi, Yuzo
    Honda, Seiwa
    Ohnishi, Hirofumi
    Hatakenaka, Masamitsu
    Takahashi, Hiroki
    Chiba, Hirofumi
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2023, 61 (02)
  • [8] Prediction of Obstructive Lung Disease from Chest Radiographs via Deep Learning Trained on Pulmonary Function Data
    Schroeder, Joyce D.
    Lanfredi, Ricardo Bigolin
    Li, Tao
    Chan, Jessica
    Vachet, Clement
    Paine, Robert, III
    Srikumar, Vivek
    Tasdizen, Tolga
    [J]. INTERNATIONAL JOURNAL OF CHRONIC OBSTRUCTIVE PULMONARY DISEASE, 2020, 15 : 3455 - 3466
  • [9] Deep learning to detect significant coronary artery disease from plain chest radiographs
    D'Ancona, G.
    Massussi, M.
    Savardi, M.
    Signoroni, A.
    Di Bacco, L.
    Farina, D.
    Metra, M.
    Maroldi, R.
    Muneretto, C.
    Ince, H.
    Marinoni, F.
    Chizzola, G.
    Curello, S.
    Benussi, S.
    [J]. EUROPEAN HEART JOURNAL, 2022, 43 : 1186 - 1186
  • [10] External Testing of a Deep Learning Model to Estimate Biologic Age Using Chest Radiographs
    Lee, Jong Hyuk
    Lee, Dongheon
    Lu, Michael T.
    Raghu, Vineet K.
    Goo, Jin Mo
    Choi, Yunhee
    Choi, Seung Ho
    Kim, Hyungjin
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2024, 6 (05)