Deep-learning algorithm to detect fibrosing interstitial lung disease on chest radiographs

被引:12
|
作者
Nishikiori, Hirotaka [1 ]
Kuronuma, Koji [1 ]
Hirota, Kenichi [2 ]
Yama, Naoya [3 ]
Suzuki, Tomohiro [4 ]
Onodera, Maki [3 ]
Onodera, Koichi [3 ]
Ikeda, Kimiyuki [1 ]
Mori, Yuki [1 ]
Asai, Yuichiro [1 ]
Takagi, Yuzo [5 ]
Honda, Seiwa [4 ]
Ohnishi, Hirofumi [6 ]
Hatakenaka, Masamitsu [3 ]
Takahashi, Hiroki [1 ]
Chiba, Hirofumi [1 ]
机构
[1] Sapporo Med Univ, Sch Med, Dept Resp Med & Allergol, Sapporo, Japan
[2] Sapporo Med Univ Hosp, Dept Med Informat Planning, Sapporo, Japan
[3] Sapporo Med Univ, Sch Med, Dept Diagnost Radiol, Sapporo, Japan
[4] M3 Inc, Tokyo, Japan
[5] SEEDSUPPLY Inc, Fujisawa, Kanagawa, Japan
[6] Sapporo Med Univ, Sch Med, Dept Publ Hlth, Sapporo, Japan
关键词
CLASSIFICATION; PNEUMONIA;
D O I
10.1183/13993003.02269-2021
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
A deep-learning algorithm was developed to detect fibrotic interstitial lung disease using chest radiographs. The algorithm's detection capability was noninferior to that of doctors, including pulmonologists and radiologists. https://bit.ly/3SAClW2
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Estimated prevalence of fibrosing interstitial lung diseases based on serum biomarkers and chest radiographs interpreted by the deep-learning algorithm in a health checkup population
    Nishikiori, Hirotaka
    Hirota, Kenichi
    Honda, Seiwa
    Asai, Yuichiro
    Mori, Yuki
    Ikeda, Kimiyuki
    Chiba, Hirofumi
    RESPIROLOGY, 2023, 28 : 18 - 18
  • [2] PERFORMANCE OF A DEEP-LEARNING ALGORITHM IN DETECTING AND DISCRIMINATING NODULES ON CHEST RADIOGRAPHS
    Agrawal, Rohitashva
    Tadepalli, Manoj
    Mittal, Ashish
    Singh, Anshul
    Kiran, Sai
    Chattoraj, Subhankar
    Sathyamurthy, Saigopal
    Putha, Preetham
    CHEST, 2023, 164 (04) : 4224A - 4225A
  • [3] Diagnosis of normal chest radiographs using an autonomous deep-learning algorithm
    Dyer, T.
    Dillard, L.
    Harrison, M.
    Morgan, T. Naunton
    Tappouni, R.
    Malik, Q.
    Rasalingham, S.
    CLINICAL RADIOLOGY, 2021, 76 (06) : 473.e9 - 473.e15
  • [4] Deep learning to estimate lung disease mortality from chest radiographs
    Jakob Weiss
    Vineet K. Raghu
    Dennis Bontempi
    David C. Christiani
    Raymond H. Mak
    Michael T. Lu
    Hugo J.W.L. Aerts
    Nature Communications, 14
  • [5] Deep learning to estimate lung disease mortality from chest radiographs
    Weiss, Jakob
    Raghu, Vineet K. K.
    Bontempi, Dennis
    Christiani, David C. C.
    Mak, Raymond H. H.
    Lu, Michael T. T.
    Aerts, Hugo J. W. L.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [6] Detection of interstitial lung disease in PA chest radiographs
    Loog, M
    van Ginneken, B
    Nielsen, M
    MEDICAL IMAGING 2004: PHYSICS OF MEDICAL IMAGING, PTS 1 AND 2, 2004, 5368 : 848 - 855
  • [7] Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma
    Gipson, Jacob
    Tang, Victor
    Seah, Jarrel
    Kavnoudias, Helen
    Zia, Adil
    Lee, Robin
    Mitra, Biswadev
    Clements, Warren
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1134):
  • [8] Deep learning to detect significant coronary artery disease from plain chest radiographs
    D'Ancona, G.
    Massussi, M.
    Savardi, M.
    Signoroni, A.
    Di Bacco, L.
    Farina, D.
    Metra, M.
    Maroldi, R.
    Muneretto, C.
    Ince, H.
    Marinoni, F.
    Chizzola, G.
    Curello, S.
    Benussi, S.
    EUROPEAN HEART JOURNAL, 2022, 43 : 1186 - 1186
  • [9] Detection of fibrosing interstitial lung disease-suspected chest radiographs using a deep learning-based computer-aided detection system: a retrospective, observational study
    Ukita, Jumpei
    Nishikiori, Hirotaka
    Hirota, Kenichi
    Honda, Seiwa
    Hatanaka, Kiwamu
    Nakamura, Ryoji
    Ikeda, Kimiyuki
    Mori, Yuki
    Asai, Yuichiro
    Chiba, Hirofumi
    Ogaki, Keisuke
    BMJ OPEN, 2024, 14 (01):
  • [10] Identification of lung regions containing interstitial lung disease in chest radiographs
    Vittitoe, NF
    Vargas-Voracek, R
    Bleich, KB
    Floyd, CE
    RADIOLOGY, 1998, 209P : 162 - 162