Deep learning to estimate lung disease mortality from chest radiographs

被引:8
|
作者
Weiss, Jakob [1 ,2 ,3 ,4 ]
Raghu, Vineet K. K. [1 ,4 ]
Bontempi, Dennis [1 ,5 ]
Christiani, David C. C. [6 ,7 ]
Mak, Raymond H. H. [1 ,2 ]
Lu, Michael T. T. [1 ,4 ]
Aerts, Hugo J. W. L. [1 ,2 ,4 ,7 ]
机构
[1] Harvard Med Sch, Harvard Inst Med, Artificial Intelligence Med AIM Program, Mass Gen Brigham, 77 Ave Louis Pasteur, Boston, MA 02115 USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol, 75 Francis St & 450 Brookline Ave, Boston, MA 02115 USA
[3] Univ Freiburg, Univ Med Ctr Freiburg, Fac Med Dept Diagnost & Intervent Radiol, Hugstetter Str 55, D-79106 Freiburg, Germany
[4] Harvard Med Sch, Massachusetts Gen Hosp, Cardiovasc Imaging Res Ctr, 165 Cambridge St, Boston, MA 02114 USA
[5] Maastricht Univ, Radiol & Nucl Med, CARIM & GROW, Univ Singel 40, NL-6229 ER Maastricht, Netherlands
[6] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 655 Huntington Ave, Boston, MA 02115 USA
[7] Harvard Med Sch, Massachusetts Gen Hosp, Pulm & Crit Care Div, 55 Fruit St, Boston, MA 02114 USA
基金
欧洲研究理事会;
关键词
CANCER MORTALITY; COPD; AGE; COMORBIDITY; SELECTION; PROSTATE; BURDEN;
D O I
10.1038/s41467-023-37758-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Risk assessment of lung disease mortality is currently limited. Here, authors show that deep learning can estimate lung disease mortality from a chest x-ray beyond risk factors, which may help to identify individuals at risk in screening and cancer populations. Prevention and management of chronic lung diseases (asthma, lung cancer, etc.) are of great importance. While tests are available for reliable diagnosis, accurate identification of those who will develop severe morbidity/mortality is currently limited. Here, we developed a deep learning model, CXR Lung-Risk, to predict the risk of lung disease mortality from a chest x-ray. The model was trained using 147,497 x-ray images of 40,643 individuals and tested in three independent cohorts comprising 15,976 individuals. We found that CXR Lung-Risk showed a graded association with lung disease mortality after adjustment for risk factors, including age, smoking, and radiologic findings (Hazard ratios up to 11.86 [8.64-16.27]; p < 0.001). Adding CXR Lung-Risk to a multivariable model improved estimates of lung disease mortality in all cohorts. Our results demonstrate that deep learning can identify individuals at risk of lung disease mortality on easily obtainable x-rays, which may improve personalized prevention and treatment strategies.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Predicting Patient Demographics From Chest Radiographs With Deep Learning
    Adleberg, Jason
    Wardeh, Amr
    Doo, Florence X.
    Marinelli, Brett
    Cook, Tessa S.
    Mendelson, David S.
    Kagen, Alexander
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2022, 19 (10) : 1151 - 1161
  • [12] Deep Learning to Assess Cardiovascular Age From Chest Radiographs
    Raghu, Vineet
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo
    Lu, Michael T.
    CIRCULATION, 2020, 142
  • [13] Automated estimation of total lung volume using chest radiographs and deep learning
    Sogancioglu, Ecem
    Murphy, Keelin
    Scholten, Ernst Th
    Boulogne, Luuk H.
    Prokop, Mathias
    van Ginneken, Bram
    MEDICAL PHYSICS, 2022, 49 (07) : 4466 - 4477
  • [14] Performance of Deep Learning Model in Detecting Operable Lung Cancer With Chest Radiographs
    Cha, Min Jae
    Chung, Myung Jin
    Lee, Jeong Hyun
    Lee, Kyung Soo
    JOURNAL OF THORACIC IMAGING, 2019, 34 (02) : 86 - 91
  • [15] Localizing tuberculosis in chest radiographs with deep learning
    Xue, Zhiyun
    Jaeger, Stefan
    Antani, Sameer
    Long, L. Rodney
    Karargyris, Alexandros
    Siegelman, Jenifer
    Folio, Les R.
    Thoma, George R.
    MEDICAL IMAGING 2018: IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, 2018, 10579
  • [16] Lung field segmentation in chest radiographs: a historical review, current status, and expectations from deep learning
    Mittal, Ajay
    Hooda, Rahul
    Sofat, Sanjeev
    IET IMAGE PROCESSING, 2017, 11 (11) : 937 - 952
  • [17] A Generic Approach to Lung Field Segmentation From Chest Radiographs Using Deep Space and Shape Learning
    Mansoor, Awais
    Cerrolaza, Juan J.
    Perez, Geovanny
    Biggs, Elijah
    Okada, Kazunori
    Nino, Gustavo
    Linguraru, Marius George
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (04) : 1206 - 1220
  • [18] Deep Learning to Predict Mortality After Cardiothoracic Surgery Using Preoperative Chest Radiographs
    Raghu, Vineet K.
    Moonsamy, Philicia
    Sundt, Thoralf M.
    Ong, Chin Siang
    Singh, Sanjana
    Cheng, Alexander
    Hou, Min
    Denning, Linda
    Gleason, Thomas G.
    Aguirre, Aaron D.
    Lu, Michael T.
    ANNALS OF THORACIC SURGERY, 2023, 115 (01): : 257 - 264
  • [19] Validation of a Deep Learning Model for Detecting Chest Pathologies from Digital Chest Radiographs
    Ajmera, Pranav
    Onkar, Prashant
    Desai, Sanjay
    Pant, Richa
    Seth, Jitesh
    Gupte, Tanveer
    Kulkarni, Viraj
    Kharat, Amit
    Passi, Nandini
    Khaladkar, Sanjay
    Kulkarni, V. M.
    DIAGNOSTICS, 2023, 13 (03)
  • [20] Deep learning to identify high-risk smokers for lung cancer screening from chest radiographs.
    Raghu, Vineet
    Mayrhofer, Thomas
    Aerts, Hugo
    Hoffmann, Udo
    Lu, Michael T.
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)