Deep Learning to Estimate Cardiovascular Risk From Chest Radiographs -A Risk Prediction Study

被引:8
|
作者
Weiss, Jakob [1 ,2 ,3 ,4 ,12 ]
Raghu, Vineet K. [1 ,2 ,3 ]
Paruchuri, Kaavya [5 ,6 ,7 ,8 ]
Zinzuwadia, Aniket [1 ,2 ]
Natarajan, Pradeep [5 ,6 ,7 ,8 ]
Aerts, Hugo J. W. L. [1 ,2 ,3 ,9 ,10 ,11 ]
Lu, Michael T. [1 ,2 ,3 ]
机构
[1] Massachusetts Gen Hosp, Cardiovasc Imaging Res Ctr, Dept Radiol, Boston, MA USA
[2] Harvard Med Sch, Boston, MA USA
[3] Harvard Med Sch, Artificial Intelligence Med Program, Mass Gen Brigham, Boston, MA USA
[4] Univ Freiburg, Univ Med Ctr Freiburg, Fac Med, Dept Diagnost & Intervent Radiol, Freiburg, Germany
[5] Harvard Med Sch, Massachusetts Gen Hosp, Cardiovasc Res Ctr, Boston, MA USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Ctr Genom Med, Boston, MA USA
[7] Broad Inst Harvard & MIT, Program Med & Populat Genet, Cambridge, MA USA
[8] Broad Inst Harvard & MIT, Cardiovasc Dis Initiat, Cambridge, MA USA
[9] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol, Boston, MA USA
[10] Maastricht Univ, Dept Radiol & Nucl Med, CARIM, Maastricht, Netherlands
[11] Maastricht Univ, GROW, Maastricht, Netherlands
[12] Mass Gen Brigham, Artificial Intelligencein Med AIM Program, Harvard Inst Med HIM Bldg,Suite 343,4 Blackfan Cir, Boston, MA 02115 USA
关键词
GLOBAL BURDEN; DISEASES; PROSTATE; LUNG;
D O I
10.7326/M23-1898
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Guidelines for primary prevention of atherosclerotic cardiovascular disease (ASCVD) recommend a risk calculator (ASCVD risk score) to estimate 10-year risk for major adverse cardiovascular events (MACE). Because the necessary inputs are often missing, complementary approaches for opportunistic risk assessment are desirable. Objective: To develop and test a deep-learning model (CXR CVD-Risk) that estimates 10-year risk for MACE from a routine chest radiograph (CXR) and compare its performance with that of the traditional ASCVD risk score for implications for statin eligibility. Design: Risk prediction study. Setting: Outpatients potentially eligible for primary cardiovascular prevention. Participants: The CXR CVD-Risk model was developed using data from a cancer screening trial. It was externally validated in 8869 outpatients with unknown ASCVD risk because of missing inputs to calculate the ASCVD risk score and in 2132 outpatients with known risk whose ASCVD risk score could be calculated. Measurements: 10-year MACE predicted by CXR CVD-Risk versus the ASCVD risk score. Results: Among 8869 outpatients with unknown ASCVD risk, those with a risk of 7.5% or higher as predicted by CXR CVD-Risk had higher 10-year risk for MACE after adjustment for risk factors (adjusted hazard ratio [HR], 1.73 [95% CI, 1.47 to 2.03]). In the additional 2132 outpatients with known ASCVD risk, CXR CVD-Risk predicted MACE beyond the traditional ASCVD risk score (adjusted HR, 1.88 [CI, 1.24 to 2.85]). Limitation: Retrospective study design using electronic medical records. Conclusion: On the basis of a single CXR, CXR CVD-Risk predicts 10-year MACE beyond the clinical standard and may help identify individuals at high risk whose ASCVD risk score cannot be calculated because of missing data. Primary Funding Source: None.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 50 条
  • [1] Deep Learning to Estimate Cardiovascular Risk From Chest Radiographs (vol 177, pg 409, 2024)
    Lam, Steven Ho Man
    Lip, Gregory Y. H.
    ANNALS OF INTERNAL MEDICINE, 2025, 178 (01) : JC4 - JC4
  • [2] Prediction of Coronary Artery Calcium and Cardiovascular Risk on Chest Radiographs Using Deep Learning
    Kamel, Peter, I
    Yi, Paul H.
    Sair, Haris, I
    Lin, Cheng Ting
    RADIOLOGY-CARDIOTHORACIC IMAGING, 2021, 3 (03):
  • [3] Deep Learning to Estimate COVID-19 Mortality Risk from Chest Radiographs
    Raghu, Vineet
    Cheng, Alexander
    Singh, Sanjana
    Li, Matthew D.
    Zinzuwadia, Aniket
    Kalpathy-Cramer, Jayashree
    Lu, Michael T.
    CIRCULATION, 2021, 144
  • [4] Deep Learning to Estimate Biological Age From Chest Radiographs
    Raghu, Vineet K.
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo J. W. L.
    Lu, Michael T.
    JACC-CARDIOVASCULAR IMAGING, 2021, 14 (11) : 2226 - 2236
  • [5] Deep Learning to Assess Cardiovascular Age From Chest Radiographs
    Raghu, Vineet
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo
    Lu, Michael T.
    CIRCULATION, 2020, 142
  • [6] Deep learning to estimate lung disease mortality from chest radiographs
    Jakob Weiss
    Vineet K. Raghu
    Dennis Bontempi
    David C. Christiani
    Raymond H. Mak
    Michael T. Lu
    Hugo J.W.L. Aerts
    Nature Communications, 14
  • [7] Deep learning to estimate lung disease mortality from chest radiographs
    Weiss, Jakob
    Raghu, Vineet K. K.
    Bontempi, Dennis
    Christiani, David C. C.
    Mak, Raymond H. H.
    Lu, Michael T. T.
    Aerts, Hugo J. W. L.
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] Polygenic Risk Score and Deep Learning Using Chest Radiographs: Complementary Prediction of Incident Coronary Artery Disease
    Paruchuri, Kaavya
    Raghu, Vineet
    Hoffmann, Udo
    Natarajan, Pradeep
    Lu, Michael T.
    CIRCULATION, 2021, 144
  • [9] Deep Learning Prediction of Cardiac Chamber Enlargement on Chest Radiographs
    Davila, David M.
    Barnawi, Rashid
    Masoudi, Samira
    Mahmoodi, Amin
    Hsiao, Albert
    Hahn, Lewis
    CIRCULATION, 2023, 148
  • [10] Prediction of future healthcare expenses of patients from chest radiographs using deep learning: a pilot study
    Jae Ho Sohn
    Yixin Chen
    Dmytro Lituiev
    Jaewon Yang
    Karen Ordovas
    Dexter Hadley
    Thienkhai H. Vu
    Benjamin L. Franc
    Youngho Seo
    Scientific Reports, 12