Development and Validation of a Deep Learning Classifier Using Chest Radiographs to Predict Extubation Success in Patients Undergoing Invasive Mechanical Ventilation

被引:0
|
作者
Tandon, Pranai [1 ]
Nguyen, Kim-Anh-Nhi [2 ]
Edalati, Masoud [2 ]
Parchure, Prathamesh [2 ]
Raut, Ganesh [2 ]
Reich, David L. [3 ]
Freeman, Robert [2 ]
Levin, Matthew A. [3 ,4 ,5 ]
Timsina, Prem [2 ]
Powell, Charles A. [1 ]
Fayad, Zahi A. [6 ,7 ]
Kia, Arash [2 ,3 ]
机构
[1] Icahn Sch Med Mt Sinai, Dept Med, Div Pulm Crit Care & Sleep Med, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Inst Healthcare Delivery Sci, Div Populat Hlth, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Dept Anesthesiol Perioperat & Pain Med, New York, NY 10029 USA
[4] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Windreich Dept Artificial Intelligence & Human Hlt, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, BioMed Engn & Imaging Inst, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Dept Radiol, New York, NY 10029 USA
来源
BIOENGINEERING-BASEL | 2024年 / 11卷 / 06期
关键词
machine learning; artificial intelligence; deep learning; transfer learning; respiratory failure; mechanical ventilation; ventilator liberation; clinical decision support;
D O I
10.3390/bioengineering11060626
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The decision to extubate patients on invasive mechanical ventilation is critical; however, clinician performance in identifying patients to liberate from the ventilator is poor. Machine Learning-based predictors using tabular data have been developed; however, these fail to capture the wide spectrum of data available. Here, we develop and validate a deep learning-based model using routinely collected chest X-rays to predict the outcome of attempted extubation. We included 2288 serial patients admitted to the Medical ICU at an urban academic medical center, who underwent invasive mechanical ventilation, with at least one intubated CXR, and a documented extubation attempt. The last CXR before extubation for each patient was taken and split 79/21 for training/testing sets, then transfer learning with k-fold cross-validation was used on a pre-trained ResNet50 deep learning architecture. The top three models were ensembled to form a final classifier. The Grad-CAM technique was used to visualize image regions driving predictions. The model achieved an AUC of 0.66, AUPRC of 0.94, sensitivity of 0.62, and specificity of 0.60. The model performance was improved compared to the Rapid Shallow Breathing Index (AUC 0.61) and the only identified previous study in this domain (AUC 0.55), but significant room for improvement and experimentation remains.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Deep learning of chest X-rays can predict mechanical ventilation outcome in ICU-admitted COVID-19 patients
    Daniel Gourdeau
    Olivier Potvin
    Jason Henry Biem
    Florence Cloutier
    Lyna Abrougui
    Patrick Archambault
    Carl Chartrand-Lefebvre
    Louis Dieumegarde
    Christian Gagné
    Louis Gagnon
    Raphaelle Giguère
    Alexandre Hains
    Huy Le
    Simon Lemieux
    Marie-Hélène Lévesque
    Simon Nepveu
    Lorne Rosenbloom
    An Tang
    Issac Yang
    Nathalie Duchesne
    Simon Duchesne
    Scientific Reports, 12
  • [22] Deep learning of chest X-rays can predict mechanical ventilation outcome in ICU-admitted COVID-19 patients
    Gourdeau, Daniel
    Potvin, Olivier
    Biem, Jason Henry
    Cloutier, Florence
    Abrougui, Lyna
    Archambault, Patrick
    Chartrand-Lefebvre, Carl
    Dieumegarde, Louis
    Gagne, Christian
    Gagnon, Louis
    Giguere, Raphaelle
    Hains, Alexandre
    Le, Huy
    Lemieux, Simon
    Levesque, Marie-Helene
    Nepveu, Simon
    Rosenbloom, Lorne
    Tang, An
    Yang, Issac
    Duchesne, Nathalie
    Duchesne, Simon
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [23] Development and validation of a dynamic deep learning algorithm using electrocardiogram to predict dyskalaemias in patients with multiple visits
    Lou, Yu-Sheng
    Lin, Chin-Sheng
    Fang, Wen-Hui
    Lee, Chia-Cheng
    Wang, Chih-Hung
    Lin, Chin
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2023, 4 (01): : 22 - 32
  • [24] Deep learning to predict long-term mortality from plain chest radiographs in patients referred for suspected angina
    D'ancona, G.
    Savardi, M.
    Massussi, M.
    Van der Valk, V.
    Signoroni, A.
    Farina, D.
    Ince, H.
    Benussi, S.
    Curello, S.
    Arslan, F.
    EUROPEAN HEART JOURNAL, 2023, 44
  • [25] Development and validation of machine learning models for predicting extubation failure in patients undergoing cardiac surgery: a retrospective study
    Xiaofeng Jiang
    Wenyong Peng
    Jianbo Xu
    Yanhong Zhu
    Scientific Reports, 15 (1)
  • [26] Prediction of future healthcare expenses of patients from chest radiographs using deep learning: a pilot study
    Sohn, Jae Ho
    Chen, Yixin
    Lituiev, Dmytro
    Yang, Jaewon
    Ordovas, Karen
    Hadley, Dexter
    Vu, Thienkhai H.
    Franc, Benjamin L.
    Seo, Youngho
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [27] Prediction of future healthcare expenses of patients from chest radiographs using deep learning: a pilot study
    Jae Ho Sohn
    Yixin Chen
    Dmytro Lituiev
    Jaewon Yang
    Karen Ordovas
    Dexter Hadley
    Thienkhai H. Vu
    Benjamin L. Franc
    Youngho Seo
    Scientific Reports, 12
  • [28] Automated detection of enteric tubes misplaced in the respiratory tract on chest radiographs using deep learning with two centre validation
    Mallon, D. H.
    McNamara, C. D.
    Rahmani, G. S.
    O'Regan, D. P.
    Amiras, D. G.
    CLINICAL RADIOLOGY, 2022, 77 (10) : E758 - E764
  • [29] DEVELOPMENT AND VALIDATION OF A MACHINE LEARNING RISK PREDICTION MODEL TO PREDICT THE RISK OF COMPLICATIONS IN PATIENTS UNDERGOING PCI WITH MECHANICAL CIRCULATORY SUPPORT
    Biondi, Max
    Amin, Amit
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 914 - 914
  • [30] Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model
    Lu, Michael T.
    Raghu, Vineet K.
    Mayrhofer, Thomas
    Aerts, Hugo J. W. L.
    Hoffmann, Udo
    ANNALS OF INTERNAL MEDICINE, 2020, 173 (09) : 704 - +