Note on "A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance"

被引:6
|
作者
Ferrer, Carlos A. [1 ]
Aragon, Efren [1 ]
机构
[1] Univ Cent Marta Abreu Las Villas, Informat Res Ctr, Santa Clara, Cuba
关键词
Imbalance; SMOTE; Probability distribution;
D O I
10.1016/j.ins.2022.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we point at a flaw in the process of applying SMOTE in [A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance, Information Sciences, 505 (2019) 32-64]. We present the corresponding corrections to the expressions of the mean and covariance matrix of the balanced minority sample and describe some implications in the experimental results.
引用
收藏
页码:322 / 324
页数:3
相关论文
共 50 条
  • [41] Probability-Based Synthetic Minority Oversampling Technique
    Altwaijry, Najwa
    IEEE ACCESS, 2023, 11 : 28831 - 28839
  • [42] MixBoost: Synthetic Oversampling using Boosted Mixup for Handling Extreme Imbalance
    Kabra, Anubha
    Chopra, Ayush
    Puri, Nikaash
    Badjatiya, Pinkesh
    Verma, Sukriti
    Gupta, Piyush
    Krishnamurthy, Balaji
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 1082 - 1087
  • [43] A synergistic oversampling technique with differential evolution and safe level synthetic minority oversampling
    Cinar, Ahmet Cevahir
    APPLIED SOFT COMPUTING, 2025, 172
  • [44] Learning class-imbalanced data with region-impurity synthetic minority oversampling technique
    Li, Der -Chiang
    Wang, Ssu-Yang
    Huang, Kuan-Cheng
    Tsai, Tung -, I
    INFORMATION SCIENCES, 2022, 607 : 1391 - 1407
  • [45] SMOTE-LMKNN: A Synthetic Minority Oversampling Technique Based on Local Means-Based k-Nearest Neighbor
    Liu, Shuang
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (05)
  • [46] SMOTE-WENN: Solving class imbalance and small sample problems by oversampling and distance scaling
    Hongjiao Guan
    Yingtao Zhang
    Min Xian
    H. D. Cheng
    Xianglong Tang
    Applied Intelligence, 2021, 51 : 1394 - 1409
  • [47] SMOTE-WENN: Solving class imbalance and small sample problems by oversampling and distance scaling
    Guan, Hongjiao
    Zhang, Yingtao
    Xian, Min
    Cheng, H. D.
    Tang, Xianglong
    APPLIED INTELLIGENCE, 2021, 51 (03) : 1394 - 1409
  • [48] VFC-SMOTE: very fast continuous synthetic minority oversampling for evolving data streams
    Alessio Bernardo
    Emanuele Della Valle
    Data Mining and Knowledge Discovery, 2021, 35 : 2679 - 2713
  • [49] VFC-SMOTE: very fast continuous synthetic minority oversampling for evolving data streams
    Bernardo, Alessio
    Della Valle, Emanuele
    DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 35 (06) : 2679 - 2713
  • [50] P-SMOTE: ONE OVERSAMPLING TECHNIQUE FOR CLASS IMBALANCED TEXT CLASSIFICATION
    Wang, Jingjing
    Lu, Wen Feng
    Loh, Han Tong
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 2, PTS A AND B, 2012, : 1089 - 1098