Note on "A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance"

被引:6
|
作者
Ferrer, Carlos A. [1 ]
Aragon, Efren [1 ]
机构
[1] Univ Cent Marta Abreu Las Villas, Informat Res Ctr, Santa Clara, Cuba
关键词
Imbalance; SMOTE; Probability distribution;
D O I
10.1016/j.ins.2022.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we point at a flaw in the process of applying SMOTE in [A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance, Information Sciences, 505 (2019) 32-64]. We present the corresponding corrections to the expressions of the mean and covariance matrix of the balanced minority sample and describe some implications in the experimental results.
引用
收藏
页码:322 / 324
页数:3
相关论文
共 50 条
  • [21] A Tailored Particle Swarm and Egyptian Vulture Optimization-Based Synthetic Minority-Oversampling Technique for Class Imbalance Problem
    Rout, Subhashree
    Mallick, Pradeep Kumar
    Reddy, Annapareddy V. N.
    Kumar, Sachin
    INFORMATION, 2022, 13 (08)
  • [22] RCSMOTE: Range-Controlled synthetic minority over-sampling technique for handling the class imbalance problem
    Soltanzadeh, Paria
    Hashemzadeh, Mahdi
    INFORMATION SCIENCES, 2021, 542 : 92 - 111
  • [23] Extreme Anomalous Oversampling Technique for Class Imbalance
    Chiamanusorn, Chittima
    Sinapiromsaran, Krung
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY (ICIT 2017), 2017, : 341 - 345
  • [24] Importance-SMOTE: a synthetic minority oversampling method for noisy imbalanced data
    Jie Liu
    Soft Computing, 2022, 26 : 1141 - 1163
  • [25] C-SMOTE: Continuous Synthetic Minority Oversampling for Evolving Data Streams
    Bernardo, Alessio
    Gomes, Heitor Murilo
    Montiel, Jacob
    Pfahringer, Bernhard
    Bifet, Albert
    Della Valle, Emanuele
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 483 - 492
  • [26] Importance-SMOTE: a synthetic minority oversampling method for noisy imbalanced data
    Liu, Jie
    SOFT COMPUTING, 2022, 26 (03) : 1141 - 1163
  • [27] HHO-SMOTe: Efficient Sampling Rate for Synthetic Minority Oversampling Technique Based on Harris Hawk Optimization
    Raslan, Khaled S. H.
    Alsharkawy, Almohammady S.
    Raslan, K. R.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 442 - 453
  • [28] CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification
    Elyan, Eyad
    Moreno-Garcia, Carlos Francisco
    Jayne, Chrisina
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2839 - 2851
  • [29] CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification
    Elyan, Eyad
    Moreno-Garcia, Carlos Francisco
    Jayne, Chrisina
    Neural Computing and Applications, 2021, 33 (07) : 2839 - 2851
  • [30] Handling Class Imbalance by Estimating Minority Class Statistics
    Ansari, Faizanuddin
    Das, Swagatam
    Shamsolmoali, Pourya
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,