Note on "A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance"

被引:6
|
作者
Ferrer, Carlos A. [1 ]
Aragon, Efren [1 ]
机构
[1] Univ Cent Marta Abreu Las Villas, Informat Res Ctr, Santa Clara, Cuba
关键词
Imbalance; SMOTE; Probability distribution;
D O I
10.1016/j.ins.2022.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we point at a flaw in the process of applying SMOTE in [A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance, Information Sciences, 505 (2019) 32-64]. We present the corresponding corrections to the expressions of the mean and covariance matrix of the balanced minority sample and describe some implications in the experimental results.
引用
收藏
页码:322 / 324
页数:3
相关论文
共 50 条
  • [31] CDSMOTE: class decomposition and synthetic minority class oversampling technique for imbalanced-data classification
    Eyad Elyan
    Carlos Francisco Moreno-Garcia
    Chrisina Jayne
    Neural Computing and Applications, 2021, 33 : 2839 - 2851
  • [32] The Study of Synthetic Minority Over-sampling Technique (SMOTE) and Weighted Extreme Learning Machine for Handling Imbalance Problem on Multiclass Microarray Classification
    Khadijah
    Kusumaningrum, Retno
    Endah, Sukmawati Nur
    Rismiyati
    2018 2ND INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS), 2018, : 153 - 158
  • [33] Handling Autism Imbalanced Data using Synthetic Minority Over-Sampling Technique (SMOTE)
    El-Sayed, Asmaa Ahmed
    Meguid, Nagwa Abdel
    Mahmood, Mahmood Abdel Manem
    Hefny, Hesham Ahmed
    PROCEEDINGS OF 2015 THIRD IEEE WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS), 2015,
  • [34] Handling Class Imbalance Problem using Oversampling Techniques: A Review
    Gosain, Anjana
    Sardana, Saanchi
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 79 - 85
  • [35] A Comparison of Two Oversampling Techniques (SMOTE vs MTDF) for Handling Class Imbalance Problem: A Case Study of Customer Churn Prediction
    Amin, Adnan
    Rahim, Faisal
    Ali, Imtiaz
    Khan, Changez
    Anwar, Sajid
    NEW CONTRIBUTIONS IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, PT 1, 2015, 353 : 215 - 225
  • [36] Safe-Level-SMOTE: Safe-Level-Synthetic Minority Over-Sampling TEchnique for Handling the Class Imbalanced Problem
    Bunkhumpornpat, Chumphol
    Sinapiromsaran, Krung
    Lursinsap, Chidchanok
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2009, 5476 : 475 - 482
  • [37] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    2002, American Association for Artificial Intelligence (16):
  • [38] SPAW-SMOTE: Space Partitioning Adaptive Weighted Synthetic Minority Oversampling Technique For Imbalanced Data Set Learning
    Zhang, Qiang
    He, Junjiang
    Li, Tao
    Lan, Xiaolong
    Fang, Wenbo
    Li, Yihong
    COMPUTER JOURNAL, 2023, 67 (05): : 1747 - 1762
  • [39] ASN-SMOTE: a synthetic minority oversampling method with adaptive qualified synthesizer selection
    Yi, Xinkai
    Xu, Yingying
    Hu, Qian
    Krishnamoorthy, Sujatha
    Li, Wei
    Tang, Zhenzhou
    COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (03) : 2247 - 2272
  • [40] ASN-SMOTE: a synthetic minority oversampling method with adaptive qualified synthesizer selection
    Xinkai Yi
    Yingying Xu
    Qian Hu
    Sujatha Krishnamoorthy
    Wei Li
    Zhenzhou Tang
    Complex & Intelligent Systems, 2022, 8 : 2247 - 2272