Note on "A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance"

被引:6
|
作者
Ferrer, Carlos A. [1 ]
Aragon, Efren [1 ]
机构
[1] Univ Cent Marta Abreu Las Villas, Informat Res Ctr, Santa Clara, Cuba
关键词
Imbalance; SMOTE; Probability distribution;
D O I
10.1016/j.ins.2022.10.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note, we point at a flaw in the process of applying SMOTE in [A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance, Information Sciences, 505 (2019) 32-64]. We present the corresponding corrections to the expressions of the mean and covariance matrix of the balanced minority sample and describe some implications in the experimental results.
引用
收藏
页码:322 / 324
页数:3
相关论文
共 50 条
  • [1] A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE) for handling class imbalance
    Elreedy, Dina
    Atiya, Amir F.
    INFORMATION SCIENCES, 2019, 505 : 32 - 64
  • [2] A Novel Distribution Analysis for SMOTE Oversampling Method in Handling Class Imbalance
    Elreedy, Dina
    Atiya, Amir F.
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 236 - 248
  • [3] A quantum approach to synthetic minority oversampling technique (SMOTE)
    Mohanty, Nishikanta
    Behera, Bikash K.
    Ferrie, Christopher
    Dash, Pravat
    QUANTUM MACHINE INTELLIGENCE, 2025, 7 (01)
  • [4] A theoretical distribution analysis of synthetic minority oversampling technique (SMOTE) for imbalanced learning
    Elreedy, Dina
    Atiya, Amir F.
    Kamalov, Firuz
    MACHINE LEARNING, 2024, 113 (07) : 4903 - 4923
  • [5] Synthetic minority oversampling technique for multiclass imbalance problems
    Zhu, Tuanfei
    Lin, Yaping
    Liu, Yonghe
    PATTERN RECOGNITION, 2017, 72 : 327 - 340
  • [6] Combining Synthetic Minority Oversampling Technique And Subset Feature Selection Technique For Class Imbalance Problem
    Lachheta, Pawan
    Bawa, Seema
    INTERNATIONAL CONFERENCE ON ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY & COMPUTING, 2016, 2016,
  • [7] A Novel Synthetic Minority Oversampling Technique for Multiclass Imbalance Problems
    Wang, Jiao
    Awang, Norhashidah
    IEEE ACCESS, 2025, 13 : 6054 - 6066
  • [8] RBM-SMOTE: Restricted Boltzmann Machines for Synthetic Minority Oversampling Technique
    Zieba, Maciej
    Tomczak, Jakub M.
    Gonczarek, Adam
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, 2015, 9011 : 377 - 386
  • [9] Synthetic oversampling with the majority class: A new perspective on handling extreme imbalance
    Sharma, Shiven
    Bellinger, Colin
    Krawczyk, Bartosz
    Zaiane, Osmar
    Japkowicz, Nathalie
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 447 - 456
  • [10] Effect of Synthetic Minority Oversampling Technique (SMOTE), Feature Representation, and Classification Algorithm on Imbalanced Sentiment Analysis
    Satriaji, Widi
    Kusumaningrum, Retno
    2018 2ND INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS), 2018, : 99 - 103