Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization

被引:1
|
作者
Garcia-Castano, Fernando [1 ]
Melguizo-Padial, Miguel Angel [1 ]
Parzanese, G. [1 ]
机构
[1] Univ Alicante, Carretera San Vicente Raspeig S-N, Alicante 03690, Spain
关键词
Scalarization; Proper efficiency; Q-minimal point; Approximate proper efficiency; Nonconvex vector optimization; Nonlinear cone separation; OPTIMALITY CONDITIONS; RESPECT; HENIG; CONE;
D O I
10.1007/s00186-023-00818-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that under a separation property, a Q-minimal point in a normed space is the minimum of a given sublinear function. This fact provides sufficient conditions, via scalarization, for nine types of proper efficient points; establishing a characterization in the particular case of Benson proper efficient points. We also obtain necessary and sufficient conditions in terms of scalarization for approximate Benson and Henig proper efficient points. The separation property we handle is a variation of another known property and our scalarization results do not require convexity or boundedness assumptions.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 50 条
  • [21] Duality related to approximate proper solutions of vector optimization problems
    Gutierrez, C.
    Huerga, L.
    Novo, V.
    Tammer, C.
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) : 117 - 139
  • [22] A note on approximate proper efficiency in linear fractional vector optimization
    Tuyen, Nguyen Van
    OPTIMIZATION LETTERS, 2022, 16 (06) : 1835 - 1845
  • [23] Duality related to approximate proper solutions of vector optimization problems
    C. Gutiérrez
    L. Huerga
    V. Novo
    C. Tammer
    Journal of Global Optimization, 2016, 64 : 117 - 139
  • [24] A note on approximate proper efficiency in linear fractional vector optimization
    Nguyen Van Tuyen
    Optimization Letters, 2022, 16 : 1835 - 1845
  • [25] Characterizations of efficient and weakly efficient points in nonconvex vector optimization
    Zhao, Ke Quan
    Yang, Xin Min
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 575 - 590
  • [26] Characterizations of efficient and weakly efficient points in nonconvex vector optimization
    Ke Quan Zhao
    Xin Min Yang
    Journal of Global Optimization, 2015, 61 : 575 - 590
  • [28] Henig Approximate Proper Efficiency and Optimization Problems with Difference of Vector Mappings
    Gutierrez, C.
    Huerga, L.
    Jimenez, B.
    Novo, V.
    JOURNAL OF CONVEX ANALYSIS, 2016, 23 (03) : 661 - 690
  • [29] On Characterizations of Proper Efficiency for Nonconvex Multiobjective Optimization
    X.X. Huang
    X.Q. Yang
    Journal of Global Optimization, 2002, 23 : 213 - 231
  • [30] On characterizations of proper efficiency for nonconvex multiobjective optimization
    Huang, XX
    Yang, XQ
    JOURNAL OF GLOBAL OPTIMIZATION, 2002, 23 (3-4) : 213 - 231