Duality related to approximate proper solutions of vector optimization problems

被引:0
|
作者
C. Gutiérrez
L. Huerga
V. Novo
C. Tammer
机构
[1] Universidad de Valladolid,Departamento de Matemática Aplicada, E.T.S. de Ingenieros de Telecomunicación
[2] Ciudad Universitaria,Departamento de Matemática Aplicada, E.T.S.I. Industriales, UNED, c/ Juan del Rosal 12
[3] Martin-Luther University Halle-Wittenberg,Institute of Mathematics, Faculty of Natural Sciences II
来源
关键词
Vector optimization; Approximate duality; Proper ; -efficiency; Nearly cone-subconvexlikeness; Linear scalarization; 90C48; 90C25; 90C46; 49N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we introduce two approximate duality approaches for vector optimization problems. The first one by means of approximate solutions of a scalar Lagrangian, and the second one by considering (C,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C,\varepsilon )$$\end{document}-proper efficient solutions of a recently introduced set-valued vector Lagrangian. In both approaches we obtain weak and strong duality results for (C,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C,\varepsilon )$$\end{document}-proper efficient solutions of the primal problem, under generalized convexity assumptions. Due to the suitable limit behaviour of the (C,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C,\varepsilon )$$\end{document}-proper efficient solutions when the error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} tends to zero, the obtained duality results extend and improve several others in the literature.
引用
收藏
页码:117 / 139
页数:22
相关论文
共 50 条
  • [1] Duality related to approximate proper solutions of vector optimization problems
    Gutierrez, C.
    Huerga, L.
    Novo, V.
    Tammer, C.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) : 117 - 139
  • [2] ON DUALITY-THEORY RELATED TO APPROXIMATE SOLUTIONS OF VECTOR-VALUED OPTIMIZATION PROBLEMS
    VALYI, I
    [J]. LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1985, 255 : 150 - 162
  • [3] OPTIMALITY CONDITIONS AND DUALITY FOR APPROXIMATE SOLUTIONS OF VECTOR OPTIMIZATION PROBLEMS
    Liu, Caiping
    Yang, Xinmin
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2015, 11 (03): : 495 - 510
  • [4] PROPER SOLUTIONS OF VECTOR OPTIMIZATION PROBLEMS
    KHANH, PQ
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (01) : 105 - 130
  • [5] LIMIT BEHAVIOR OF APPROXIMATE PROPER SOLUTIONS IN VECTOR OPTIMIZATION
    Gutierrez, Cesar
    Huerga, Lidia
    Novo, Vicente
    Sama, Miguel
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) : 2677 - 2696
  • [6] Scalarization and saddle points of approximate proper solutions in nearly subconvexlike vector optimization problems
    Gutierrez, C.
    Huerga, L.
    Novo, V.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (02) : 1046 - 1058
  • [7] PROPER EFFICIENCY AND DUALITY FOR VECTOR-VALUED OPTIMIZATION PROBLEMS
    WEIR, T
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 21 - 34
  • [8] On comparison of approximate solutions in vector optimization problems
    Rabinovich Ya.I.
    [J]. Computational Mathematics and Mathematical Physics, 2006, 46 (10) : 1705 - 1716
  • [9] Optimality conditions and duality on approximate solutions in vector optimization with arcwise connectivity
    C. P. Liu
    H. W. J. Lee
    X. M. Yang
    [J]. Optimization Letters, 2012, 6 : 1613 - 1626
  • [10] Optimality conditions and duality on approximate solutions in vector optimization with arcwise connectivity
    Liu, C. P.
    Lee, H. W. J.
    Yang, X. M.
    [J]. OPTIMIZATION LETTERS, 2012, 6 (08) : 1613 - 1626