Duality related to approximate proper solutions of vector optimization problems

被引:0
|
作者
C. Gutiérrez
L. Huerga
V. Novo
C. Tammer
机构
[1] Universidad de Valladolid,Departamento de Matemática Aplicada, E.T.S. de Ingenieros de Telecomunicación
[2] Ciudad Universitaria,Departamento de Matemática Aplicada, E.T.S.I. Industriales, UNED, c/ Juan del Rosal 12
[3] Martin-Luther University Halle-Wittenberg,Institute of Mathematics, Faculty of Natural Sciences II
来源
关键词
Vector optimization; Approximate duality; Proper ; -efficiency; Nearly cone-subconvexlikeness; Linear scalarization; 90C48; 90C25; 90C46; 49N15;
D O I
暂无
中图分类号
学科分类号
摘要
In this work we introduce two approximate duality approaches for vector optimization problems. The first one by means of approximate solutions of a scalar Lagrangian, and the second one by considering (C,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C,\varepsilon )$$\end{document}-proper efficient solutions of a recently introduced set-valued vector Lagrangian. In both approaches we obtain weak and strong duality results for (C,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C,\varepsilon )$$\end{document}-proper efficient solutions of the primal problem, under generalized convexity assumptions. Due to the suitable limit behaviour of the (C,ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(C,\varepsilon )$$\end{document}-proper efficient solutions when the error ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document} tends to zero, the obtained duality results extend and improve several others in the literature.
引用
收藏
页码:117 / 139
页数:22
相关论文
共 50 条