Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization

被引:1
|
作者
Garcia-Castano, Fernando [1 ]
Melguizo-Padial, Miguel Angel [1 ]
Parzanese, G. [1 ]
机构
[1] Univ Alicante, Carretera San Vicente Raspeig S-N, Alicante 03690, Spain
关键词
Scalarization; Proper efficiency; Q-minimal point; Approximate proper efficiency; Nonconvex vector optimization; Nonlinear cone separation; OPTIMALITY CONDITIONS; RESPECT; HENIG; CONE;
D O I
10.1007/s00186-023-00818-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that under a separation property, a Q-minimal point in a normed space is the minimum of a given sublinear function. This fact provides sufficient conditions, via scalarization, for nine types of proper efficient points; establishing a characterization in the particular case of Benson proper efficient points. We also obtain necessary and sufficient conditions in terms of scalarization for approximate Benson and Henig proper efficient points. The separation property we handle is a variation of another known property and our scalarization results do not require convexity or boundedness assumptions.
引用
下载
收藏
页码:367 / 382
页数:16
相关论文
共 50 条
  • [1] Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization
    Fernando García-Castaño
    Miguel Ángel Melguizo-Padial
    G. Parzanese
    Mathematical Methods of Operations Research, 2023, 97 : 367 - 382
  • [2] Conic Scalarizations for Approximate Efficient Solutions in Nonconvex Vector Optimization Problems
    Guo H.
    Zhang W.-L.
    Journal of the Operations Research Society of China, 2017, 5 (3) : 419 - 430
  • [3] POSITIVE PROPER EFFICIENT POINTS IN VECTOR OPTIMIZATION
    DAUER, JP
    GALLAGHER, RJ
    SALEH, OA
    PROCEEDINGS OF THE 28TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-3, 1989, : 2474 - 2475
  • [4] PROPER EFFICIENCY FOR NONCONVEX VECTOR OPTIMIZATION PROBLEM
    Li, Genghua
    Li, Shengjie
    You, Manxue
    Chen, Chunrong
    PACIFIC JOURNAL OF OPTIMIZATION, 2019, 15 (04): : 505 - 517
  • [5] PROPER EFFICIENCY OF NONCONVEX VECTOR OPTIMIZATION PROBLEMS
    RONG Weidong (Department oI Mothematics
    Journal of Systems Science & Complexity, 1998, (01) : 18 - 25
  • [6] Approximate proper efficiency in vector optimization
    Zhao, Kequan
    Chen, Guangya
    Yang, Xinmin
    OPTIMIZATION, 2015, 64 (08) : 1777 - 1793
  • [7] Characterizations of the Benson proper efficiency for nonconvex vector optimization
    Chen, GY
    Rong, WD
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (02) : 365 - 384
  • [8] Nonconvex Vector Optimization and Optimality Conditions for Proper Efficiency
    Kiyani, E.
    Vaezpour, S. M.
    Tavakoli, J.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2022, 20
  • [9] Characterizations of the Benson Proper Efficiency for Nonconvex Vector Optimization
    G. Y. Chen
    W. D. Rong
    Journal of Optimization Theory and Applications, 1998, 98 : 365 - 384
  • [10] Characterizations of Hartley Proper Efficiency in Nonconvex Vector Optimization
    Gue Myung Lee
    Do Sang Kim
    Pham Huu Sach
    Journal of Global Optimization, 2005, 33 : 273 - 298