Sublinear scalarizations for proper and approximate proper efficient points in nonconvex vector optimization

被引:1
|
作者
Garcia-Castano, Fernando [1 ]
Melguizo-Padial, Miguel Angel [1 ]
Parzanese, G. [1 ]
机构
[1] Univ Alicante, Carretera San Vicente Raspeig S-N, Alicante 03690, Spain
关键词
Scalarization; Proper efficiency; Q-minimal point; Approximate proper efficiency; Nonconvex vector optimization; Nonlinear cone separation; OPTIMALITY CONDITIONS; RESPECT; HENIG; CONE;
D O I
10.1007/s00186-023-00818-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We show that under a separation property, a Q-minimal point in a normed space is the minimum of a given sublinear function. This fact provides sufficient conditions, via scalarization, for nine types of proper efficient points; establishing a characterization in the particular case of Benson proper efficient points. We also obtain necessary and sufficient conditions in terms of scalarization for approximate Benson and Henig proper efficient points. The separation property we handle is a variation of another known property and our scalarization results do not require convexity or boundedness assumptions.
引用
收藏
页码:367 / 382
页数:16
相关论文
共 50 条