Grading of lung adenocarcinomas with simultaneous segmentation by artificial intelligence (GLASS-AI)

被引:2
|
作者
Lockhart, John H. [1 ,2 ]
Ackerman, Hayley D. [1 ,2 ]
Lee, Kyubum [3 ]
Abdalah, Mahmoud [4 ]
Davis, Andrew John [1 ,2 ]
Hackel, Nicole [1 ,2 ]
Boyle, Theresa A. [5 ]
Saller, James [5 ]
Keske, Aysenur [6 ]
Hanggi, Kay [6 ]
Ruffell, Brian [6 ]
Stringfield, Olya [4 ]
Cress, W. Douglas [1 ]
Tan, Aik Choon [3 ]
Flores, Elsa R. [1 ,2 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Mol Oncol, Tampa, FL 33612 USA
[2] H Lee Moffitt Canc Ctr & Res Inst, Canc Biol & Evolut Program, Tampa, FL 33612 USA
[3] H Lee Moffitt Canc Ctr & Res Inst, Biostat & Bioinformat, Tampa, FL 33612 USA
[4] H Lee Moffitt Canc Ctr & Res Inst, Quantitat Imaging Core, Tampa, FL 33612 USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Anat Pathol, Tampa, FL 33612 USA
[6] H Lee Moffitt Canc Ctr & Res Inst, Immunol, Tampa, FL 33612 USA
关键词
INTRATUMOR HETEROGENEITY; CANCER; INITIATION;
D O I
10.1038/s41698-023-00419-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Preclinical genetically engineered mouse models (GEMMs) of lung adenocarcinoma are invaluable for investigating molecular drivers of tumor formation, progression, and therapeutic resistance. However, histological analysis of these GEMMs requires significant time and training to ensure accuracy and consistency. To achieve a more objective and standardized analysis, we used machine learning to create GLASS-AI, a histological image analysis tool that the broader cancer research community can utilize to grade, segment, and analyze tumors in preclinical models of lung adenocarcinoma. GLASS-AI demonstrates strong agreement with expert human raters while uncovering a significant degree of unreported intratumor heterogeneity. Integrating immunohistochemical staining with high-resolution grade analysis by GLASS-AI identified dysregulation of Mapk/Erk signaling in high-grade lung adenocarcinomas and locally advanced tumor regions. Our work demonstrates the benefit of employing GLASS-AI in preclinical lung adenocarcinoma models and the power of integrating machine learning and molecular biology techniques for studying the molecular pathways that underlie cancer progression.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Grading of lung adenocarcinomas with simultaneous segmentation by artificial intelligence (GLASS-AI)
    John H. Lockhart
    Hayley D. Ackerman
    Kyubum Lee
    Mahmoud Abdalah
    Andrew John Davis
    Nicole Hackel
    Theresa A. Boyle
    James Saller
    Aysenur Keske
    Kay Hänggi
    Brian Ruffell
    Olya Stringfield
    W. Douglas Cress
    Aik Choon Tan
    Elsa R. Flores
    npj Precision Oncology, 7
  • [2] The effect of Artificial Intelligence (AI) on lung perfusion SPECT-CT segmentation analysis
    van Beveren, A. Willems
    Nauta, G. T.
    van Erp-Zeilstra, A.
    Heus, A.
    Pruim, J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2020, 47 (SUPPL 1) : S153 - S153
  • [3] Characterization of Volume Doubling Times of Lung Adenocarcinomas With Automated, Artificial Intelligence Volumetric Lesion Segmentation and Tracking
    Cypro, A.
    Babar, H. S.
    Kim, J. H.
    Patel, L.
    Lin, G. Y.
    Cheng, G. Z.
    Hsiao, A.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207
  • [4] A literature review of artificial intelligence (AI) for medical image segmentation: from AI and explainable AI to trustworthy AI
    Teng, Zixuan
    Li, Lan
    Xin, Ziqing
    Xiang, Dehui
    Huang, Jiang
    Zhou, Hailing
    Shi, Fei
    Zhu, Weifang
    Cai, Jing
    Peng, Tao
    Chen, Xinjian
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (12) : 9620 - 9652
  • [5] Artificial Intelligence (AI) and Lung Ultrasound in Infectious Pulmonary Disease
    Trovato, Guglielmo
    Russo, Matteo
    FRONTIERS IN MEDICINE, 2021, 8
  • [6] Applicability of Artificial Intelligence (AI) in Infiltration-Based Grading of Pancreatic Neuroendocrine Tumors
    Esmer, Rohat
    Eren, Ozgur Can
    Koc, Soner
    Kasapoglu, Ulkem
    Cesur, Berke
    Saka, Burcu
    Tarcan, Zeynep
    Basturk, Olca
    Gunduz-Demir, Cigdem
    Adsay, N. Volkan
    LABORATORY INVESTIGATION, 2024, 104 (03) : S1830 - S1831
  • [7] Artificial Intelligence (AI) for Lung Nodules, From the AJR Special Series on AI Applications
    Liu, Jonathan A.
    Yang, Issac Y.
    Tsai, Emily B.
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2022, 219 (05) : 703 - 712
  • [8] Automated segmentation of the human placenta and uterus with MR imaging using artificial intelligence (AI)
    Twickler, Diane M.
    Do, Quyen N.
    Xi, Yin
    Shahedi, Maysam
    Dormer, James
    Devi, Anusha T. T.
    Lewis, Matthew A.
    Spong, Catherine Y.
    Dashe, Jodi S.
    Madhuranthakam, Ananth
    Fei, Baowei
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S158 - S159
  • [9] Automatic Segmentation of Abdominal Anatomy by Artificial Intelligence (AI) in Adaptive Radiotherapy of Pancreatic Cancer
    Spieler, B.
    Patel, N. V.
    Breto, A. L.
    Ford, J.
    Stoyanova, R.
    Zavala-Romero, O.
    Mellon, E. A.
    Portelance, L.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E130 - E131
  • [10] The artificial intelligence-based model ANORAK improves histopathological grading of lung adenocarcinoma
    Xiaoxi Pan
    Khalid AbdulJabbar
    Jose Coelho-Lima
    Anca-Ioana Grapa
    Hanyun Zhang
    Alvin Ho Kwan Cheung
    Juvenal Baena
    Takahiro Karasaki
    Claire Rachel Wilson
    Marco Sereno
    Selvaraju Veeriah
    Sarah J. Aitken
    Allan Hackshaw
    Andrew G. Nicholson
    Mariam Jamal-Hanjani
    Charles Swanton
    Yinyin Yuan
    John Le Quesne
    David A. Moore
    Nature Cancer, 2024, 5 : 347 - 363