Refined probabilistic local well-posedness for a cubic Schrödinger half-wave equation

被引:0
|
作者
Camps, Nicolas [1 ]
Gassot, Louise [2 ]
Ibrahim, Slim [3 ,4 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, UMR 8628, Batiment 307, F-91405 Orsay, France
[2] Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Univ Victoria, Dept Math & Stat, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[4] Pacific Inst Math Sci, 4176-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Cauchy theory; Nonlinear Schrodinger equation; Half-wave equation; Weakly dispersive equation; Random initial data; Quasilinear equation; NONLINEAR SCHRODINGER-EQUATION; DATA CAUCHY-THEORY; GLOBAL EXISTENCE; SCATTERING;
D O I
10.1016/j.jde.2023.10.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain probabilistic local well-posedness in quasilinear regimes for the Schrodinger half-wave equation with a cubic nonlinearity. We need to use a refined ansatz because of the lack of probabilistic smoothing in the Picard's iterations, which is due to the high-low-low nonlinear interactions. The proof is an adaptation of the method of Bringmann on the derivative nonlinear wave equation [6] to Schrodinger-type equations. In addition, we discuss ill-posedness results for this equation. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:443 / 490
页数:48
相关论文
共 50 条