Well-Posedness for the Extended Schrödinger-Benjamin-Ono System

被引:1
|
作者
Linares, Felipe [1 ]
Mendez, Argenis J. [2 ]
Pilod, Didier [3 ]
机构
[1] Inst Matemat Pura & Aplicada IMPA, Estr Dona Castorina,110 Jardim Bot, Rio De Janeiro, RJ, Brazil
[2] Pontificia Univ Catolica Valparaiso, Blanco Viel 596, Valparaiso, Chile
[3] Univ Bergen, Dept Math, Postbox 7800, N-5020 Bergen, Norway
关键词
Schrodinger equation; Benjamin-Ono equation; Smoothing effects; INTERNAL GRAVITY-WAVE; BENJAMIN-ONO; SCHRODINGER; EQUATIONS;
D O I
10.1007/s10013-023-00664-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we prove that the initial value problem associated to the Schr & ouml;dinger-Benjamin-Ono type system{ i partial derivative(t)u+partial derivative(2)(x)u=uv+beta u|u|(2),partial derivative(t)v-h(x)partial derivative(2)(x)v+pv partial derivative(x)v=partial derivative(x)(|u|(2))u(x,0)=u(0)(x),v(x,0)=v(0)(x),with beta,rho is an element of R is locally well-posed for initial data (u(0),v(0))is an element of Hs+1/2(R)xH(s)(R) for s >5/4. Our method of proof relies on energy methods and compactness arguments. However, due to the lack of symmetry of the nonlinearity, the usual energy has to be modified to cancel out some bad terms appearing in the estimates. Finally, in order to lower the regularity below the Sobolev threshold s =3/2, we employ a refined Strichartz estimate introduced in the Benjamin-Ono setting by Koch and Tzvetkov, and further developed by Kenig and Koenig.
引用
收藏
页码:1043 / 1066
页数:24
相关论文
共 50 条
  • [1] WELL-POSEDNESS FOR THE EXTENDED SCHRÖDINGER-BENJAMIN-ONO SYSTEM
    Linares, Felipe
    Mendez, Argenis
    Pilod, Didier
    arXiv, 2023,
  • [2] Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system?
    Department of Mathematics, University of Toronto, 40 St. George St., Toronto, ON M5S 2E4, Canada
    SIAM J. Math. Anal., 1600, 6 (2207-2225):
  • [3] On well-posedness for the Benjamin–Ono equation
    Nicolas Burq
    Fabrice Planchon
    Mathematische Annalen, 2008, 340 : 497 - 542
  • [4] On well-posedness for the Benjamin-Ono equation
    Burq, Nicolas
    Planchon, Fabrice
    MATHEMATISCHE ANNALEN, 2008, 340 (03) : 497 - 542
  • [5] Sharp well-posedness for the Benjamin–Ono equation
    Rowan Killip
    Thierry Laurens
    Monica Vişan
    Inventiones mathematicae, 2024, 236 : 999 - 1054
  • [6] SHARP WELL-POSEDNESS RESULTS FOR THE SCHRODINGER-BENJAMIN-ONO SYSTEM
    Domingues, Leandro
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (1-2) : 31 - 54
  • [7] Sharp well-posedness for the Benjamin-Ono equation
    Killip, Rowan
    Laurens, Thierry
    Visan, Monica
    INVENTIONES MATHEMATICAE, 2024, 236 (03) : 999 - 1054
  • [8] Well-posedness for equations of Benjamin-Ono type
    Herr, Sebastian
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (03) : 951 - 976
  • [9] SHARP WELL-POSEDNESS FOR THE BENJAMIN-ONO EQUATION
    Killip, Rowan
    Laurens, Thierry
    Vişan, Monica
    arXiv, 2023,
  • [10] On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations
    Kenig, CE
    Koenig, KD
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (5-6) : 879 - 895