共 50 条
Well-Posedness for the Extended Schrödinger-Benjamin-Ono System
被引:1
|作者:
Linares, Felipe
[1
]
Mendez, Argenis J.
[2
]
Pilod, Didier
[3
]
机构:
[1] Inst Matemat Pura & Aplicada IMPA, Estr Dona Castorina,110 Jardim Bot, Rio De Janeiro, RJ, Brazil
[2] Pontificia Univ Catolica Valparaiso, Blanco Viel 596, Valparaiso, Chile
[3] Univ Bergen, Dept Math, Postbox 7800, N-5020 Bergen, Norway
关键词:
Schrodinger equation;
Benjamin-Ono equation;
Smoothing effects;
INTERNAL GRAVITY-WAVE;
BENJAMIN-ONO;
SCHRODINGER;
EQUATIONS;
D O I:
10.1007/s10013-023-00664-w
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this work we prove that the initial value problem associated to the Schr & ouml;dinger-Benjamin-Ono type system{ i partial derivative(t)u+partial derivative(2)(x)u=uv+beta u|u|(2),partial derivative(t)v-h(x)partial derivative(2)(x)v+pv partial derivative(x)v=partial derivative(x)(|u|(2))u(x,0)=u(0)(x),v(x,0)=v(0)(x),with beta,rho is an element of R is locally well-posed for initial data (u(0),v(0))is an element of Hs+1/2(R)xH(s)(R) for s >5/4. Our method of proof relies on energy methods and compactness arguments. However, due to the lack of symmetry of the nonlinearity, the usual energy has to be modified to cancel out some bad terms appearing in the estimates. Finally, in order to lower the regularity below the Sobolev threshold s =3/2, we employ a refined Strichartz estimate introduced in the Benjamin-Ono setting by Koch and Tzvetkov, and further developed by Kenig and Koenig.
引用
收藏
页码:1043 / 1066
页数:24
相关论文