Refined probabilistic local well-posedness for a cubic Schrödinger half-wave equation

被引:0
|
作者
Camps, Nicolas [1 ]
Gassot, Louise [2 ]
Ibrahim, Slim [3 ,4 ]
机构
[1] Univ Paris Saclay, Lab Math Orsay, CNRS, UMR 8628, Batiment 307, F-91405 Orsay, France
[2] Univ Basel, Dept Math & Informat, Spiegelgasse 1, CH-4051 Basel, Switzerland
[3] Univ Victoria, Dept Math & Stat, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[4] Pacific Inst Math Sci, 4176-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Cauchy theory; Nonlinear Schrodinger equation; Half-wave equation; Weakly dispersive equation; Random initial data; Quasilinear equation; NONLINEAR SCHRODINGER-EQUATION; DATA CAUCHY-THEORY; GLOBAL EXISTENCE; SCATTERING;
D O I
10.1016/j.jde.2023.10.054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain probabilistic local well-posedness in quasilinear regimes for the Schrodinger half-wave equation with a cubic nonlinearity. We need to use a refined ansatz because of the lack of probabilistic smoothing in the Picard's iterations, which is due to the high-low-low nonlinear interactions. The proof is an adaptation of the method of Bringmann on the derivative nonlinear wave equation [6] to Schrodinger-type equations. In addition, we discuss ill-posedness results for this equation. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:443 / 490
页数:48
相关论文
共 50 条
  • [21] On global well-posedness for defocusing cubic wave equation
    Bahouri, Hajer
    Chemin, Jean-Yves
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [22] Local well-posedness of a quasilinear wave equation
    Doerfler, Willy
    Gerner, Hannes
    Schnaubelt, Roland
    APPLICABLE ANALYSIS, 2016, 95 (09) : 2110 - 2123
  • [23] WELL-POSEDNESS AND BLOWUP FOR THE DISPERSION-MANAGED NONLINEAR SCHR?DINGER EQUATION
    Murphy, Jason
    Van Hoose, Tim
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) : 2489 - 2502
  • [25] Local well-posedness for the quadratic Schrödinger equation in two-dimensional compact manifolds with boundary
    Marcelo Nogueira
    Mahendra Panthee
    São Paulo Journal of Mathematical Sciences, 2021, 15 : 996 - 1024
  • [26] On the Well-Posedness and Stability of Cubic and Quintic Nonlinear Schródinger Systems on T3
    Chen, Thomas
    Urban, Amie Bowles
    ANNALES HENRI POINCARE, 2024, 25 (02): : 1657 - 1692
  • [27] Well-Posedness and Stability for Schrödinger Equations with Infinite Memory
    M. M. Cavalcanti
    V. N. Domingos Cavalcanti
    A. Guesmia
    M. Sepúlveda
    Applied Mathematics & Optimization, 2022, 85
  • [28] Well-posedness for anticipated backward stochastic Schrödinger equations
    Chen, Zhang
    Yang, Li
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2023,
  • [29] On the well-posedness for stochastic Schrödinger equations with quadratic potential
    Daoyuan Fang
    Linzi Zhang
    Ting Zhang
    Chinese Annals of Mathematics, Series B, 2011, 32 : 711 - 728
  • [30] Well-Posedness and Stability for Schrödinger Equations with Infinite Memory
    Cavalcanti, M.M.
    Domingos Cavalcanti, V.N.
    Guesmia, A.
    Sepúlveda, M.
    Applied Mathematics and Optimization, 2022, 85 (02):