TWISTS OF RATIONAL CHEREDNIK ALGEBRAS

被引:1
|
作者
Bazlov, Y. [1 ]
Jones-Healey, E. [1 ]
Mcgaw, A. [1 ]
Berenstein, A. [2 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, England
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2023年 / 74卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
COCYCLE TWISTS; REPRESENTATIONS; DISCRETE;
D O I
10.1093/qmath/haac033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups G(m, p, n), when m is even. This gives a new construction of mystic reflection groups which have Artin-Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.
引用
收藏
页码:511 / 528
页数:18
相关论文
共 50 条