The Dunkl weight function for rational Cherednik algebras

被引:0
|
作者
Seth Shelley-Abrahamson
机构
[1] Massachusetts Institute of Technology,Department of Mathematics
来源
Selecta Mathematica | 2020年 / 26卷
关键词
16G99; 33C67;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the existence of the Dunkl weight function Kc,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{c, \lambda }$$\end{document} for any irreducible representation λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} of any finite Coxeter group W, generalizing previous results of Dunkl. In particular, Kc,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{c, \lambda }$$\end{document} is a family of tempered distributions on the real reflection representation of W taking values in EndC(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {End}_\mathbb {C}(\lambda )$$\end{document}, with holomorphic dependence on the complex multi-parameter c. When the parameter c is real, the distribution Kc,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{c, \lambda }$$\end{document} provides an integral formula for Cherednik’s Gaussian inner product γc,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{c, \lambda }$$\end{document} on the Verma module Δc(λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _c(\lambda )$$\end{document} for the rational Cherednik algebra Hc(W,h)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_c(W, \mathfrak {h})$$\end{document}.queryPlease check and confirm the inserted city name ‘Stanford’ for the affiliation is correct. In this case, the restriction of Kc,λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{c, \lambda }$$\end{document} to the hyperplane arrangement complement hR,reg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {h}_{\mathbb {R}, reg}$$\end{document} is given by integration against an analytic function whose values can be interpreted as braid group invariant Hermitian forms on KZ(Δc(λ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$KZ(\Delta _c(\lambda ))$$\end{document}, where KZ denotes the Knizhnik–Zamolodchikov functor introduced by Ginzburg–Guay–Opdam–Rouquier. This provides a concrete connection between invariant Hermitian forms on representations of rational Cherednik algebras and invariant Hermitian forms on representations of Iwahori–Hecke algebras, and we exploit this connection to show that the KZ functor preserves signatures, and in particular unitarizability, in an appropriate sense.
引用
收藏
相关论文
共 50 条
  • [1] The Dunkl weight function for rational Cherednik algebras
    Shelley-Abrahamson, Seth
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (01):
  • [2] Rational Cherednik Algebras
    Gordon, Iain G.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1209 - 1225
  • [3] Noncommutative Dunkl operators and braided Cherednik algebras
    Yuri Bazlov
    Arkady Berenstein
    Selecta Mathematica, 2009, 14 : 325 - 372
  • [4] Noncommutative Dunkl operators and braided Cherednik algebras
    Bazlov, Yuri
    Berenstein, Arkady
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 325 - 372
  • [5] Microlocalization of rational Cherednik algebras
    Kashiwara, Masaki
    Rouquier, Raphael
    DUKE MATHEMATICAL JOURNAL, 2008, 144 (03) : 525 - 573
  • [6] Representations of rational Cherednik algebras
    Rouquier, R
    INFINITE-DIMENSIONAL ASPECTS OF REPRESENTATION THEORY AND APPLICATIONS, 2005, 392 : 103 - 131
  • [7] Restricted rational Cherednik algebras
    Thiel, Ulrich
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 681 - 745
  • [8] TWISTS OF RATIONAL CHEREDNIK ALGEBRAS
    Bazlov, Y.
    Jones-Healey, E.
    Mcgaw, A.
    Berenstein, A.
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (02): : 511 - 528
  • [9] On the category 𝒪 for rational Cherednik algebras
    Victor Ginzburg
    Nicolas Guay
    Eric Opdam
    Raphaël Rouquier
    Inventiones mathematicae, 2003, 154 : 617 - 651
  • [10] On the category O for rational Cherednik algebras
    Ginzburg, V
    Guay, N
    Opdam, E
    Rouquier, R
    INVENTIONES MATHEMATICAE, 2003, 154 (03) : 617 - 651