TWISTS OF RATIONAL CHEREDNIK ALGEBRAS

被引:1
|
作者
Bazlov, Y. [1 ]
Jones-Healey, E. [1 ]
Mcgaw, A. [1 ]
Berenstein, A. [2 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, England
[2] Univ Oregon, Dept Math, Eugene, OR 97403 USA
来源
QUARTERLY JOURNAL OF MATHEMATICS | 2023年 / 74卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
COCYCLE TWISTS; REPRESENTATIONS; DISCRETE;
D O I
10.1093/qmath/haac033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that braided Cherednik algebras introduced by Bazlov and Berenstein are cocycle twists of rational Cherednik algebras of the imprimitive complex reflection groups G(m, p, n), when m is even. This gives a new construction of mystic reflection groups which have Artin-Schelter regular rings of quantum polynomial invariants. As an application of this result, we show that a braided Cherednik algebra has a finite-dimensional representation if and only if its rational counterpart has one.
引用
收藏
页码:511 / 528
页数:18
相关论文
共 50 条
  • [1] Rational Cherednik Algebras
    Gordon, Iain G.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1209 - 1225
  • [2] Microlocalization of rational Cherednik algebras
    Kashiwara, Masaki
    Rouquier, Raphael
    DUKE MATHEMATICAL JOURNAL, 2008, 144 (03) : 525 - 573
  • [3] Representations of rational Cherednik algebras
    Rouquier, R
    INFINITE-DIMENSIONAL ASPECTS OF REPRESENTATION THEORY AND APPLICATIONS, 2005, 392 : 103 - 131
  • [4] Restricted rational Cherednik algebras
    Thiel, Ulrich
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 681 - 745
  • [5] On the category 𝒪 for rational Cherednik algebras
    Victor Ginzburg
    Nicolas Guay
    Eric Opdam
    Raphaël Rouquier
    Inventiones mathematicae, 2003, 154 : 617 - 651
  • [6] On the category O for rational Cherednik algebras
    Ginzburg, V
    Guay, N
    Opdam, E
    Rouquier, R
    INVENTIONES MATHEMATICAE, 2003, 154 (03) : 617 - 651
  • [7] Rational Cherednik algebras and Hilbert schemes
    Gordon, I
    Stafford, JT
    ADVANCES IN MATHEMATICS, 2005, 198 (01) : 222 - 274
  • [8] Rational Cherednik Algebras and Schubert Cells
    Gwyn Bellamy
    Algebras and Representation Theory, 2019, 22 : 1533 - 1567
  • [9] Parabolic degeneration of rational Cherednik algebras
    Griffeth, Stephen
    Gusenbauer, Armin
    Juteau, Daniel
    Lanini, Martina
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (04): : 2705 - 2754
  • [10] Rational Cherednik Algebras and Schubert Cells
    Bellamy, Gwyn
    ALGEBRAS AND REPRESENTATION THEORY, 2019, 22 (06) : 1533 - 1567