Dirac Induction for Rational Cherednik Algebras

被引:4
|
作者
Ciubotaru, Dan [1 ]
De Martino, Marcelo [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
CALOGERO-MOSER; DISCRETE-SERIES; REPRESENTATIONS; COHOMOLOGY; OPERATOR;
D O I
10.1093/imrn/rny153
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the local and global indices of Dirac operators for the rational Cherednik algebra H-t,H-c(G, h), where G is a complex reflection group acting on a finite-dimensional vector space h. We investigate precise relations between the (local) Dirac index of a simple module in the category O of H-t,H-c(G, h), the graded G-character of the module, the Euler-Poincare pairing, and the composition series polynomials for standard modules. In the global theory, we introduce integral-reflection modules for H-t,H-c(G, h) constructed from finite-dimensional G-modules. We define and compute the index of a Dirac operator on the integral-reflection module and show that the index is, in a sense, independent of the parameter function c. The study of the kernel of these global Dirac operators leads naturally to a notion of dualised generalised Dunkl-Opdam operators.
引用
收藏
页码:5155 / 5214
页数:60
相关论文
共 50 条
  • [1] Rational Cherednik Algebras
    Gordon, Iain G.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1209 - 1225
  • [2] Parabolic induction and restriction functors for rational Cherednik algebras
    Roman Bezrukavnikov
    Pavel Etingof
    Selecta Mathematica, 2009, 14 : 397 - 425
  • [3] Parabolic induction and restriction functors for rational Cherednik algebras
    Bezrukavnikov, Roman
    Etingof, Pavel
    SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4): : 397 - 425
  • [4] Microlocalization of rational Cherednik algebras
    Kashiwara, Masaki
    Rouquier, Raphael
    DUKE MATHEMATICAL JOURNAL, 2008, 144 (03) : 525 - 573
  • [5] Representations of rational Cherednik algebras
    Rouquier, R
    INFINITE-DIMENSIONAL ASPECTS OF REPRESENTATION THEORY AND APPLICATIONS, 2005, 392 : 103 - 131
  • [6] Restricted rational Cherednik algebras
    Thiel, Ulrich
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 681 - 745
  • [7] TWISTS OF RATIONAL CHEREDNIK ALGEBRAS
    Bazlov, Y.
    Jones-Healey, E.
    Mcgaw, A.
    Berenstein, A.
    QUARTERLY JOURNAL OF MATHEMATICS, 2023, 74 (02): : 511 - 528
  • [8] On the category 𝒪 for rational Cherednik algebras
    Victor Ginzburg
    Nicolas Guay
    Eric Opdam
    Raphaël Rouquier
    Inventiones mathematicae, 2003, 154 : 617 - 651
  • [9] On the category O for rational Cherednik algebras
    Ginzburg, V
    Guay, N
    Opdam, E
    Rouquier, R
    INVENTIONES MATHEMATICAE, 2003, 154 (03) : 617 - 651
  • [10] Rational Cherednik algebras and Hilbert schemes
    Gordon, I
    Stafford, JT
    ADVANCES IN MATHEMATICS, 2005, 198 (01) : 222 - 274