Optimal Parameter-Transfer Learning by Semiparametric Model Averaging

被引:0
|
作者
Hu, Xiaonan [1 ,2 ]
Zhang, Xinyu [2 ,3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Sci & Technol China, Int Inst Finance, Sch Management, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
asymptotic optimality; cross-validation; negative transfer; prediction; weight; INTEGRATIVE ANALYSIS; REGRESSION; ESTIMATOR; FRAMEWORK; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we focus on prediction of a target model by transferring the information of source models. To be flexible, we use semiparametric additive frameworks for the target and source models. Inheriting the spirit of parameter-transfer learning, we assume that different models possibly share common knowledge across parametric components that is helpful for the target predictive task. Unlike existing parameter-transfer approaches, which need to construct auxiliary source models by parameter similarity with the target model and then adopt a regularization procedure, we propose a frequentist model averaging strategy with a J-fold cross-validation criterion so that auxiliary parameter information from different models can be adaptively transferred through data-driven weight assignments. The asymptotic optimality and weight convergence of our proposed method are built under some regularity conditions. Extensive numerical results demonstrate the superiority of the proposed method over competitive methods.
引用
收藏
页数:53
相关论文
共 50 条
  • [41] Improving Tensor Regression by Optimal Model Averaging
    Bu, Qiushi
    Liang, Hua
    Zhang, Xinyu
    Zou, Jiahui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024,
  • [42] When and when not to use optimal model averaging
    Schomaker, Michael
    Heumann, Christian
    STATISTICAL PAPERS, 2020, 61 (05) : 2221 - 2240
  • [43] When and when not to use optimal model averaging
    Michael Schomaker
    Christian Heumann
    Statistical Papers, 2020, 61 : 2221 - 2240
  • [44] Model averaging, optimal inference, and habit formation
    FitzGerald, Thomas H. B.
    Dolan, Raymond J.
    Friston, Karl J.
    FRONTIERS IN HUMAN NEUROSCIENCE, 2014, 8
  • [45] Model averaging for asymptotically optimal combined forecasts
    Chen, Yi-Ting
    Liu, Chu-An
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 592 - 607
  • [46] Optimal model averaging estimator for expectile regressions
    Bai, Yang
    Jiang, Rongjie
    Zhang, Mengli
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 217 : 204 - 223
  • [47] MODEL PREDICTIVE OPTIMAL AVERAGING LEVEL CONTROL
    CAMPO, PJ
    MORARI, M
    AICHE JOURNAL, 1989, 35 (04) : 579 - 591
  • [48] OPTIMAL MODEL AVERAGING OF VARYING COEFFICIENT MODELS
    Li, Cong
    Li, Qi
    Racine, Jeffrey S.
    Zhang, Daiqiang
    STATISTICA SINICA, 2018, 28 (04) : 2795 - 2809
  • [49] Optimal model averaging for multivariate regression models
    Liao, Jun
    Wan, Alan T. K.
    He, Shuyuan
    Zou, Guohua
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [50] The ADMM algorithm for distributed averaging: Convergence rates and optimal parameter selection
    Ghadimi, Euhanna
    Teixeira, Andre
    Rabbat, Michael G.
    Johansson, Mikael
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 783 - 787