Optimal Parameter-Transfer Learning by Semiparametric Model Averaging

被引:0
|
作者
Hu, Xiaonan [1 ,2 ]
Zhang, Xinyu [2 ,3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Sci & Technol China, Int Inst Finance, Sch Management, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
asymptotic optimality; cross-validation; negative transfer; prediction; weight; INTEGRATIVE ANALYSIS; REGRESSION; ESTIMATOR; FRAMEWORK; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we focus on prediction of a target model by transferring the information of source models. To be flexible, we use semiparametric additive frameworks for the target and source models. Inheriting the spirit of parameter-transfer learning, we assume that different models possibly share common knowledge across parametric components that is helpful for the target predictive task. Unlike existing parameter-transfer approaches, which need to construct auxiliary source models by parameter similarity with the target model and then adopt a regularization procedure, we propose a frequentist model averaging strategy with a J-fold cross-validation criterion so that auxiliary parameter information from different models can be adaptively transferred through data-driven weight assignments. The asymptotic optimality and weight convergence of our proposed method are built under some regularity conditions. Extensive numerical results demonstrate the superiority of the proposed method over competitive methods.
引用
收藏
页数:53
相关论文
共 50 条
  • [21] Averaging simplifies optimal population transfer problems
    Grivopoulos, Symeon
    Bamieh, Bassam
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2495 - 2499
  • [22] Semiparametric model averaging prediction for lifetime data via hazards regression
    Li, Jialiang
    Yu, Tonghui
    Lv, Jing
    Lee, Mei-Ling Ting
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (05) : 1187 - 1209
  • [23] Variable selection and model averaging in semiparametric overdispersed generalized linear models
    Cottet, Remy
    Kohn, Robert J.
    Nott, David J.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 661 - 671
  • [24] Semiparametric Model Averaging for Ultrahigh-Dimensional Conditional Quantile Prediction
    Chao Hui GUO
    Jing LV
    Hu YANG
    Jing Wen TU
    Chen Xiao TIAN
    ActaMathematicaSinica,EnglishSeries, 2023, (06) : 1171 - 1202
  • [25] Semiparametric Model Averaging for Ultrahigh-Dimensional Conditional Quantile Prediction
    Guo, Chao Hui
    Lv, Jing
    Yang, Hu
    Tu, Jing Wen
    Tian, Chen Xiao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (06) : 1171 - 1202
  • [26] Model-averaging-based semiparametric modeling for conditional quantile prediction
    Chaohui Guo
    Wenyang Zhang
    Science China(Mathematics), 2024, 67 (12) : 2843 - 2872
  • [27] Model averaging estimator for semiparametric mixed effects models with measurement errors
    Chang, Baoqun
    Wu, Liucang
    Li, Na
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025,
  • [28] Semiparametric Model Averaging for Ultrahigh-Dimensional Conditional Quantile Prediction
    Chao Hui Guo
    Jing Lv
    Hu Yang
    Jing Wen Tu
    Chen Xiao Tian
    Acta Mathematica Sinica, English Series, 2023, 39 : 1171 - 1202
  • [29] Model-averaging-based semiparametric modeling for conditional quantile prediction
    Guo, Chaohui
    Zhang, Wenyang
    SCIENCE CHINA-MATHEMATICS, 2024, 67 (12) : 2843 - 2872
  • [30] Optimal designs for frequentist model averaging
    Alhorn, K.
    Schorning, K.
    Dette, H.
    BIOMETRIKA, 2019, 106 (03) : 665 - 682