Optimal Parameter-Transfer Learning by Semiparametric Model Averaging

被引:0
|
作者
Hu, Xiaonan [1 ,2 ]
Zhang, Xinyu [2 ,3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Univ Sci & Technol China, Int Inst Finance, Sch Management, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
asymptotic optimality; cross-validation; negative transfer; prediction; weight; INTEGRATIVE ANALYSIS; REGRESSION; ESTIMATOR; FRAMEWORK; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we focus on prediction of a target model by transferring the information of source models. To be flexible, we use semiparametric additive frameworks for the target and source models. Inheriting the spirit of parameter-transfer learning, we assume that different models possibly share common knowledge across parametric components that is helpful for the target predictive task. Unlike existing parameter-transfer approaches, which need to construct auxiliary source models by parameter similarity with the target model and then adopt a regularization procedure, we propose a frequentist model averaging strategy with a J-fold cross-validation criterion so that auxiliary parameter information from different models can be adaptively transferred through data-driven weight assignments. The asymptotic optimality and weight convergence of our proposed method are built under some regularity conditions. Extensive numerical results demonstrate the superiority of the proposed method over competitive methods.
引用
收藏
页数:53
相关论文
共 50 条
  • [31] Semiparametric estimation of a location parameter in the binary choice model
    Chen, SN
    ECONOMETRIC THEORY, 1999, 15 (01) : 79 - 98
  • [32] Parameter estimation for a generalized semiparametric model with repeated measurements
    Shujie Ma
    Zijian Huang
    Chih-Ling Tsai
    Annals of the Institute of Statistical Mathematics, 2016, 68 : 725 - 764
  • [34] Parameter estimation for a generalized semiparametric model with repeated measurements
    Ma, Shujie
    Huang, Zijian
    Tsai, Chih-Ling
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2016, 68 (04) : 725 - 764
  • [35] Analysis of factors influencing smoothing parameter in semiparametric model
    Tao, Xiaojing
    Zhu, Jianjun
    Tian, Yumiao
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2012, 37 (03): : 298 - 301
  • [36] Covid 19 image classification using hybrid averaging transfer learning model
    Abbas, Qamar
    Mahmood, Khalid
    ur Rehman, Saif
    Imran, Muhammad
    MEHRAN UNIVERSITY RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY, 2023, 42 (04) : 72 - 83
  • [37] Composite quantile regression for ultra-high dimensional semiparametric model averaging
    Guo, Chaohui
    Lv, Jing
    Wu, Jibo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 160 (160)
  • [38] Parameter Transfer Extreme Learning Machine based on Projective Model
    Chen, Chao
    Jiang, Boyuan
    Jin, Xinyu
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 647 - 654
  • [39] Parameter estimation for optimal asteroid transfer trajectories using supervised machine learning
    Shang, Haibin
    Wu, Xiaoyu
    Qiao, Dong
    Huang, Xiangyu
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 79 : 570 - 579
  • [40] Learning Bound for Parameter Transfer Learning
    Kumagai, Wataru
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29