GraphCS: Graph-based client selection for heterogeneity in federated learning

被引:2
|
作者
Chang, Tao [1 ]
Li, Li [2 ]
Wu, MeiHan [1 ]
Yu, Wei [3 ]
Wang, Xiaodong [1 ]
Xu, ChengZhong [2 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Key Lab Parallel & Distributed Comp, Changsha, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City, Taipa, Peoples R China
[3] China Elect Technol Grp Corp, Res Inst 30, Chengdu, Peoples R China
关键词
Federated learning; Client selection; Heterogeneity; ALGORITHMS;
D O I
10.1016/j.jpdc.2023.03.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning coordinates many mobile devices to train an artificial intelligence model while preserving data privacy collaboratively. Mobile devices are usually equipped with totally different hardware configurations, leading to various training capabilities. At the same time, the distribution of the local training data is highly heterogeneous across different clients. Randomly selecting the clients to participate in the training process results in poor model performance and low system efficiency. In this paper, we propose GraphCS, a graph-based client selection framework for heterogeneity in Federated Learning. GraphCS first measures the distribution coupling across the clients via the model gradients. After that, it divides the clients into different groups according to the diversity of the local datasets. At the same time, it well estimates the runtime training capability of each client by jointly considering the hardware configuration and resource contention caused by the concurrently running apps. With the distribution coupling information and runtime training capability, GraphCS selects the best clients in order to well balance the model accuracy and overall training progress. We evaluate the performance of GraphCS with mobile devices with different hardware configurations on various datasets. The experiment results show that our approach improves model accuracy up to 45.69%. Meanwhile, it reduces communication and computation overhead 87.35% and 89.48% at best, respectively. Furthermore, GraphCS accelerates the overall training process up to 35x. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 143
页数:13
相关论文
共 50 条
  • [41] Client Selection for Asynchronous Federated Learning with Fairness Consideration
    Zhu, Hongbin
    Yang, Miao
    Kuang, Junqian
    Qian, Hua
    Zhou, Yong
    2022 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2022, : 800 - 805
  • [42] Towards Understanding Biased Client Selection in Federated Learning
    Cho, Yae Jee
    Wang, Jianyu
    Joshi, Gauri
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [43] VFedCS: Optimizing Client Selection for Volatile Federated Learning
    Shi, Fang
    Hu, Chunchao
    Lin, Weiwei
    Fan, Lisheng
    Huang, Tiansheng
    Wu, Wentai
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24) : 24995 - 25010
  • [44] Incentive Mechanism for Federated Learning With Random Client Selection
    Wu, Hongyi
    Tang, Xiaoying
    Zhang, Ying-Jun Angela
    Gao, Lin
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (02): : 1922 - 1933
  • [45] Compressed Client Selection for Efficient Communication in Federated Learning
    Mohamed, Aissa Hadj
    Assumpcao, Nicolas R. G.
    Astudillo, Carlos A.
    de Souza, Allan M.
    Bittencourt, Luiz F.
    Villas, Leandro A.
    2023 IEEE 20TH CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2023,
  • [46] Stochastic Client Selection for Federated Learning With Volatile Clients
    Huang, Tiansheng
    Lin, Weiwei
    Shen, Li
    Li, Keqin
    Zomaya, Albert Y.
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 20055 - 20070
  • [47] Asynchronous Wireless Federated Learning With Probabilistic Client Selection
    Yang, Jiarong
    Liu, Yuan
    Chen, Fangjiong
    Chen, Wen
    Li, Changle
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (07) : 7144 - 7158
  • [48] Client Selection in Federated Learning under Imperfections in Environment
    Rai, Sumit
    Kumari, Arti
    Prasad, Dilip K.
    AI, 2022, 3 (01) : 124 - 145
  • [49] Client Selection in Federated Learning: Principles, Challenges, and Opportunities
    Fu, Lei
    Zhang, Huanle
    Gao, Ge
    Zhang, Mi
    Liu, Xin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (24) : 21811 - 21819
  • [50] Fast Heterogeneous Federated Learning with Hybrid Client Selection
    Song, Duanxiao
    Shen, Guangyuan
    Gao, Dehong
    Yang, Libin
    Zhou, Xukai
    Pan, Shirui
    Lou, Wei
    Zhou, Fang
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2006 - 2015