Client Selection in Federated Learning under Imperfections in Environment

被引:15
|
作者
Rai, Sumit [1 ]
Kumari, Arti [1 ]
Prasad, Dilip K. [2 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Indian Sch Mines Dhanbad, Dhanbad 826004, India
[2] UiT Arctic Univ Norway, Dept Comp Sci, N-9019 Tromso, Norway
关键词
federated learning; client selection; class imbalance; free-riders; active learning; faster convergence; FedAvg; FSVRG; COOP;
D O I
10.3390/ai3010008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning promises an elegant solution for learning global models across distributed and privacy-protected datasets. However, challenges related to skewed data distribution, limited computational and communication resources, data poisoning, and free riding clients affect the performance of federated learning. Selection of the best clients for each round of learning is critical in alleviating these problems. We propose a novel sampling method named the irrelevance sampling technique. Our method is founded on defining a novel irrelevance score that incorporates the client characteristics in a single floating value, which can elegantly classify the client into three numerical sign defined pools for easy sampling. It is a computationally inexpensive, intuitive and privacy preserving sampling technique that selects a subset of clients based on quality and quantity of data on edge devices. It achieves 50-80% faster convergence even in highly skewed data distribution in the presence of free riders based on lack of data and severe class imbalance under both Independent and Identically Distributed (IID) and Non-IID conditions. It shows good performance on practical application datasets.
引用
收藏
页码:124 / 145
页数:22
相关论文
共 50 条
  • [1] Client Selection for Federated Bayesian Learning
    Yang, Jiarong
    Liu, Yuan
    Kassab, Rahif
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (04) : 915 - 928
  • [2] Client Selection in Hierarchical Federated Learning
    Trindade, Silvana
    da Fonseca, Nelson L. S.
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28480 - 28495
  • [3] An Online Learning Approach for Client Selection in Federated Edge Learning under Budget Constraint
    Su, Lina
    Zhou, Ruiting
    Wang, Ne
    Fang, Guang
    Li, Zongpeng
    [J]. 51ST INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2022, 2022,
  • [4] Client Selection with Bandwidth Allocation in Federated Learning
    Kuang, Junqian
    Yang, Miao
    Zhu, Hongbin
    Qian, Hua
    [J]. 2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [5] Towards Client Selection in Satellite Federated Learning
    Wu, Changhao
    He, Siyang
    Yin, Zengshan
    Guo, Chongbin
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [6] Active Client Selection for Clustered Federated Learning
    Huang, Honglan
    Shi, Wei
    Feng, Yanghe
    Niu, Chaoyue
    Cheng, Guangquan
    Huang, Jincai
    Liu, Zhong
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [7] A review on client selection models in federated learning
    Panigrahi, Monalisa
    Bharti, Sourabh
    Sharma, Arun
    [J]. WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 13 (06)
  • [8] An Efficient Client Selection for Wireless Federated Learning
    Chen, Jingyi
    Wang, Qiang
    Zhang, Wenqi
    [J]. 2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 291 - 296
  • [9] A Review of Client Selection Methods in Federated Learning
    Mayhoub S.
    M. Shami T.
    [J]. Archives of Computational Methods in Engineering, 2024, 31 (02) : 1129 - 1152
  • [10] Client Selection for Federated Learning With Label Noise
    Yang, Miao
    Qian, Hua
    Wang, Ximin
    Zhou, Yong
    Zhu, Honghin
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2193 - 2197