A Multi-Agent Reinforcement Learning Method for Cooperative Secondary Voltage Control of Microgrids

被引:3
|
作者
Wang, Tianhao [1 ]
Ma, Shiqian [1 ]
Tang, Zhuo [2 ]
Xiang, Tianchun [3 ]
Mu, Chaoxu [2 ]
Jin, Yao [3 ]
机构
[1] State Grid Tianjin Elect Power Co, Elect Power Res Inst, Huayuan Ind Zone, Binhai High Tech Zone, 8,Haitai Huake 4th Rd, Tianjin 300384, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China
[3] State Grid Tianjin Elect Power Co, 39 Wujing,Guangfu St, Tianjin 300010, Peoples R China
关键词
multi-agent reinforcement learning; microgrid; voltage control; attention mechanism; FREQUENCY CONTROL; ISLANDED MICROGRIDS; FRAMEWORK; SYSTEM;
D O I
10.3390/en16155653
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a novel cooperative voltage control strategy for an isolated microgrid based on the multi-agent advantage actor-critic (MA2C) algorithm. The proposed method facilitates the collaborative operation of a distributed energy system (DES) by adopting an attention mechanism to adaptively boost information processing effectiveness through the assignment of importance scores. Additionally, the algorithm we propose, executed through a centralized training and decentralized execution framework, implements secondary control and effectively restores voltage deviation. The introduction of an attention mechanism alleviates the burden of information transmission. Finally, we illustrate the effectiveness of the proposed method through a DES consisting of six energy nodes.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] The Cooperative Reinforcement Learning in a Multi-Agent Design System
    Liu, Hong
    Wang, Jihua
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 139 - 144
  • [32] Cooperative Multi-Agent Reinforcement Learning in Express System
    Li, Yexin
    Zheng, Yu
    Yang, Qiang
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 805 - 814
  • [33] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [34] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [35] Centralized reinforcement learning for multi-agent cooperative environments
    Chengxuan Lu
    Qihao Bao
    Shaojie Xia
    Chongxiao Qu
    Evolutionary Intelligence, 2024, 17 : 267 - 273
  • [36] Centralized reinforcement learning for multi-agent cooperative environments
    Lu, Chengxuan
    Bao, Qihao
    Xia, Shaojie
    Qu, Chongxiao
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (01) : 267 - 273
  • [37] Cooperative multi-agent game based on reinforcement learning
    Liu, Hongbo
    HIGH-CONFIDENCE COMPUTING, 2024, 4 (01):
  • [38] Training Cooperative Agents for Multi-Agent Reinforcement Learning
    Bhalla, Sushrut
    Subramanian, Sriram G.
    Crowley, Mark
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 1826 - 1828
  • [39] Cooperative Exploration for Multi-Agent Deep Reinforcement Learning
    Liu, Iou-Jen
    Jain, Unnat
    Yeh, Raymond A.
    Schwing, Alexander G.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [40] Reinforcement learning of coordination in cooperative multi-agent systems
    Kapetanakis, S
    Kudenko, D
    EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 326 - 331