A Multi-Agent Reinforcement Learning Method for Cooperative Secondary Voltage Control of Microgrids

被引:3
|
作者
Wang, Tianhao [1 ]
Ma, Shiqian [1 ]
Tang, Zhuo [2 ]
Xiang, Tianchun [3 ]
Mu, Chaoxu [2 ]
Jin, Yao [3 ]
机构
[1] State Grid Tianjin Elect Power Co, Elect Power Res Inst, Huayuan Ind Zone, Binhai High Tech Zone, 8,Haitai Huake 4th Rd, Tianjin 300384, Peoples R China
[2] Tianjin Univ, Sch Elect & Informat Engn, 92 Weijin Rd, Tianjin 300072, Peoples R China
[3] State Grid Tianjin Elect Power Co, 39 Wujing,Guangfu St, Tianjin 300010, Peoples R China
关键词
multi-agent reinforcement learning; microgrid; voltage control; attention mechanism; FREQUENCY CONTROL; ISLANDED MICROGRIDS; FRAMEWORK; SYSTEM;
D O I
10.3390/en16155653
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper proposes a novel cooperative voltage control strategy for an isolated microgrid based on the multi-agent advantage actor-critic (MA2C) algorithm. The proposed method facilitates the collaborative operation of a distributed energy system (DES) by adopting an attention mechanism to adaptively boost information processing effectiveness through the assignment of importance scores. Additionally, the algorithm we propose, executed through a centralized training and decentralized execution framework, implements secondary control and effectively restores voltage deviation. The introduction of an attention mechanism alleviates the burden of information transmission. Finally, we illustrate the effectiveness of the proposed method through a DES consisting of six energy nodes.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A Cooperative Multi-Agent Reinforcement Learning Method Based on Coordination Degree
    Cui, Haoyan
    Zhang, Zhen
    IEEE ACCESS, 2021, 9 : 123805 - 123814
  • [22] Deep Reinforcement Learning Agent for Negotiation in Multi-Agent Cooperative Distributed Predictive Control
    Aponte-Rengifo, Oscar
    Vega, Pastora
    Francisco, Mario
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [23] Learning Cooperative Intrinsic Motivation in Multi-Agent Reinforcement Learning
    Hong, Seung-Jin
    Lee, Sang-Kwang
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1697 - 1699
  • [24] Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning
    Wang, Xin
    Zhao, Chen
    Huang, Tingwen
    Chakrabarti, Prasun
    Kurths, Juergen
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 13 - 23
  • [25] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [26] Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning
    Park, Young Joon
    Lee, Young Jae
    Kim, Seoung Bum
    IEEE ACCESS, 2020, 8 : 125389 - 125400
  • [27] Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution
    Bai, Yunpeng
    Gong, Chen
    Zhang, Bin
    Fan, Guoliang
    Hou, Xinwen
    Lu, Yu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [28] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [29] Levels of Realism for Cooperative Multi-agent Reinforcement Learning
    Cunningham, Bryan
    Cao, Yong
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 573 - 582
  • [30] Cooperative Multi-agent Reinforcement Learning for Inventory Management
    Khirwar, Madhav
    Gurumoorthy, Karthik S.
    Jain, Ankit Ajit
    Manchenahally, Shantala
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI, 2023, 14174 : 619 - 634