A Data Discovery and Visualization Tool for Visual Analytics of Time Series in Digital Agriculture

被引:0
|
作者
Dhaliwal, Jasmin K. [1 ]
Galbraith, Megan E. [1 ]
Leung, Carson K. [1 ]
Tan, Da [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
information visualization; visual analytics; data science; data visualization; knowledge discovery; agricultural data; digital agriculture; time series;
D O I
10.1109/IV60283.2023.00053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the current era of big data, huge volumes of data can be easily generated and collected at a high velocity from a wide variety of rich data sources. Embedded in these big data-which may also contain many labels or tags-are implicit, previously unknown and potential useful information that can be discovered. Discovered knowledge helps user get a better understanding of the data. However, amounts of discovered knowledge from these huge volumes of big data can also be large. To help users comprehend the discovered knowledge, visualization approaches are in demand. In this paper, we present a data discovery and visualization tool. The tool enables users to visually monitor and explore multi-sourced, multi-tagged time-series data. It also enables users to conduct visual analytics to discover interesting data/knowledge and to visualize this information. Although we demonstrate the practicality of our tool for multi-sourced, multi-tagged time-series data from the agricultural sector, our tool can be applicable to a wide variety of other domains.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 50 条
  • [1] VisIVO Visual Analytics Tool: An EOSC Science Demonstrator for Data Discovery
    Becciani, Ugo
    Vitello, Fabio
    Sciacca, Eva
    Costa, Alessandro
    Calanducci, Antonio
    Riggi, Simone
    Molinari, Sergio
    [J]. ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 29 - 32
  • [2] Developing a Visual Analytics Tool for Large-scale Proteomics Time-series Data
    Jenny Vuong
    Stolte, Christian
    Kaur, Sandeep
    O'Donoghue, Sean
    [J]. 2016 INTERNATIONAL SYMPOSIUM ON BIG DATA VISUAL ANALYTICS (BDVA), 2016, : 68 - 69
  • [3] PolarViz: a discriminating visualization and visual analytics tool for high-dimensional data
    Yan Chao Wang
    Qian Zhang
    Feng Lin
    Chi Keong Goh
    Hock Soon Seah
    [J]. The Visual Computer, 2019, 35 : 1567 - 1582
  • [4] PolarViz: a discriminating visualization and visual analytics tool for high-dimensional data
    Wang, Yan Chao
    Zhang, Qian
    Lin, Feng
    Goh, Chi Keong
    Seah, Hock Soon
    [J]. VISUAL COMPUTER, 2019, 35 (11): : 1567 - 1582
  • [5] Clustering and Classification for Time Series Data in Visual Analytics: A Survey
    Ali, Mohammed
    Alqahtani, Ali
    Jones, Mark W.
    Xie, Xianghua
    [J]. IEEE ACCESS, 2019, 7 : 181314 - 181338
  • [6] Visual Analytics of Multivariate Intensive Care Time Series Data
    Brich, N.
    Schulz, C.
    Peter, J.
    Klingert, W.
    Schenk, M.
    Weiskopf, D.
    Krone, M.
    [J]. COMPUTER GRAPHICS FORUM, 2022, 41 (06) : 273 - 286
  • [7] A Visual Analytics Platform and Advanced Visualization Tools for Interpreting and Analyzing Wind Energy Time-Series Data
    Chin, George, Jr.
    Chen, Yousu
    Fitzhenry, Erin
    McGary, Blaine
    Pirrung, Meg
    Bruce, Joe
    Winner, Scott
    [J]. IFAC PAPERSONLINE, 2018, 51 (28): : 480 - 485
  • [8] Preface: Visualization and data analytics for scientific discovery
    Childs, Hank
    Cappello, Franck
    [J]. PARALLEL COMPUTING, 2016, 55 : 1 - 1
  • [9] Visualization Methods for Exploratory Subgroup Discovery on Time Series Data
    Hudson, Dan
    Wiltshire, Travis J.
    Atzmueller, Martin
    [J]. BIO-INSPIRED SYSTEMS AND APPLICATIONS: FROM ROBOTICS TO AMBIENT INTELLIGENCE, PT II, 2022, 13259 : 34 - 44
  • [10] Artistic data visualization:: Beyond visual analytics
    Viegas, Fernanda B.
    Wattenberg, Martin
    [J]. ONLINE COMMUNITIES AND SOCIAL COMPUTING, PROCEEDINGS, 2007, 4564 : 182 - +