A Data Discovery and Visualization Tool for Visual Analytics of Time Series in Digital Agriculture

被引:0
|
作者
Dhaliwal, Jasmin K. [1 ]
Galbraith, Megan E. [1 ]
Leung, Carson K. [1 ]
Tan, Da [1 ]
机构
[1] Univ Manitoba, Dept Comp Sci, Winnipeg, MB, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
information visualization; visual analytics; data science; data visualization; knowledge discovery; agricultural data; digital agriculture; time series;
D O I
10.1109/IV60283.2023.00053
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the current era of big data, huge volumes of data can be easily generated and collected at a high velocity from a wide variety of rich data sources. Embedded in these big data-which may also contain many labels or tags-are implicit, previously unknown and potential useful information that can be discovered. Discovered knowledge helps user get a better understanding of the data. However, amounts of discovered knowledge from these huge volumes of big data can also be large. To help users comprehend the discovered knowledge, visualization approaches are in demand. In this paper, we present a data discovery and visualization tool. The tool enables users to visually monitor and explore multi-sourced, multi-tagged time-series data. It also enables users to conduct visual analytics to discover interesting data/knowledge and to visualize this information. Although we demonstrate the practicality of our tool for multi-sourced, multi-tagged time-series data from the agricultural sector, our tool can be applicable to a wide variety of other domains.
引用
收藏
页码:268 / 271
页数:4
相关论文
共 50 条
  • [31] Collaborative visual analytics for network traffic time-series data with multiple views
    [J]. Wu, Qing (wuqing@csu.edu.cn), 2016, Chinese Academy of Sciences (27):
  • [32] A Visual Analytics Framework for Reviewing Multivariate Time-Series Data with Dimensionality Reduction
    Fujiwara, Takanori
    Shilpika
    Sakamoto, Naohisa
    Nonaka, Jorji
    Yamamoto, Keiji
    Ma, Kwan-Liu
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 1601 - 1611
  • [33] Digital education governance: data visualization, predictive analytics, and 'real-time' policy instruments
    Williamson, Ben
    [J]. JOURNAL OF EDUCATION POLICY, 2016, 31 (02) : 123 - 141
  • [34] Application of Mathematical Optimization in Data Visualization and Visual Analytics: A Survey
    Sun, Guodao
    Zhu, Zihao
    Zhang, Gefei
    Xu, Chaoqing
    Wang, Yunchao
    Zhu, Sujia
    Chang, Baofeng
    Liang, Ronghua
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (04) : 1018 - 1037
  • [35] Data Discovery with Tableau: A Case Study Using Data Analytics Tool
    Kumar, Amresh
    Baitule, Sayali M.
    Sahu, Santosh Kumar
    [J]. HELIX, 2018, 8 (05): : 3849 - 3852
  • [36] PyramidViz: Visual Analytics and Big Data Visualization of Frequent Patterns
    Leung, Carson K.
    Kononov, Vadim V.
    Pazdor, Adam G. M.
    Jiang, Fan
    [J]. 2016 IEEE 14TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 14TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 2ND INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/DATACOM/CYBERSC, 2016, : 913 - 916
  • [37] Composite Visual Mapping for Time Series Visualization
    Jabbari, Ali
    Blanch, Renaud
    Dupuy-Chessa, Sophie
    [J]. 2018 IEEE PACIFIC VISUALIZATION SYMPOSIUM (PACIFICVIS), 2018, : 116 - 124
  • [38] BiNA: A Visual Analytics Tool for Biological Network Data
    Gerasch, Andreas
    Faber, Daniel
    Kuentzer, Jan
    Niermann, Peter
    Kohlbacher, Oliver
    Lenhof, Hans-Peter
    Kaufmann, Michael
    [J]. PLOS ONE, 2014, 9 (02):
  • [39] Integrated Visual Analytics Tool for Heterogeneous Text Data
    Park, Jihyoun
    [J]. 2014 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST), 2014, : 325 - 326
  • [40] Cubix: A Visual Analytics Tool for Conceptual and Semantic Data
    Melo, Cassio
    Mikheev, Alexander
    Le Grand, Benedicte
    Aufaure, Marie-Aude
    [J]. 12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2012), 2012, : 894 - 897